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Pendulums are the defining feature of pendulum clocks, of 
course, but today they don’t elicit much thought. Most modern 
“pendulum” clocks simply drive the pendulum to provide a 
historical look, but a great deal of ingenuity originally went into 
their design in order to produce highly accurate clocks. This 
essay explores horologic design efforts that were so important at 
one time—not gearwork, winding mechanisms, crutches or 
escapements (which may appear as later essays), but the 
surprising inventiveness found in the “simple” pendulum itself. 
 
It is commonly known that Galileo (1564-1642) discovered that 
a swinging weight exhibits isochronism, purportedly by 
noticing that chandeliers in the Pisa cathedral had identical
periods despite the amplitudes of their swings. The advantage 
here is that the driving force for the pendulum, which is difficult 
to regulate, could vary without affecting its period. Galileo was

a medical student in Pisa at the time and began using it to check patients’ pu

 

 
lse rates. 

 
Galileo later established that the period of a pendulum varies as the square root of its length and is 
independent of the material of the pendulum bob (the mass at the end). One thing that surprised 
me when I encountered it is that the escapement preceded the pendulum—the verge escapement 
was used with hanging weights and possibly water clocks from at least the 14th century and 
probably much earlier. The pendulum provided a means of regulating such an escapement, and in 
fact Galileo invented the pin-wheel escapement to use in a pendulum clock he designed but never 
built. But it took the work of others to design pendulums for truly accurate clocks, and here we 
consider the contributions of three of these: Christiaan Huygens, George Graham and John 
Harrison. 
 
It was Christiaan Huygens (1629-1695) who built the first pendulum clock as we know it on 
Christmas, 1656. His pendulum swung in a wide arc of about 30° and consisted of a metal ball 
suspended by silk threads. There are a few design aspects of pendulums that may appear obvious 
in retrospect but which were novel enough at the time. First, there is the matter of air and gear 
friction. To minimize these effects there must be sufficient mass to make frictional forces 
irrelevant, the rod of the pendulum should be thin, and the pendulum must be enclosed to avoid 
drafts. It is also true, unlike in Huygen’s pendulum, that the bob itself should be thin—later bobs 
were made to slice through the air, and this feature along with the requirement for significant 
mass results in the tapered lens-shaped disk that we see today on pendulums. 
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The second design feature we see in this clock 
design of Huygens is the concentration of mass at 
the bottom of the pendulum. While the mass itself 
does not contribute to the period of the pendulum 
(after frictional forces are overcome), the length of 
the pendulum certainly does, and this length is 
measured from the pivot point to the center of mass 
of the pendulum. The common “seconds” 
pendulum (which actually has a two-second period) 
is convenient for gearing ratios since most clock 
escapements move the seconds hands on each 
swing, and this pendulum has a length of a little 
over 39 inches. Huygens and Christopher Wren 
proposed this distance as a standard unit of length, 
but were unaware at that time of the geographic 
variation of this length (in 1793 the meter was 
standardized as one ten-millionth of the distance 
between the North Pole and equator based on 
curvature estimates from triangulations by 

Delambra and Mechain). Later measurements by Jean Richter of this geographic variation led 
Huygens to assign this variation to centripetal force from the Earth’s rotation, which is indeed 
latitude dependent. The "seconds" length requirement makes for non-portable pendulum clocks, 
particularly if the center of mass of the pendulum is not as low as possible (and also exacerbated 
if the pendulum has a wide swing to accommodate as in Huygens’ first clock). 
 
Mahoney points out that Huygens' invention of the pendulum clock contained an important 
feature: the independent suspension of the pendulum and the crutch linked the clock mechanism 
and the pendulum, but in a way that allowed separate, one-way adjustments. The driving force of 
the escapement could be adjusted without affecting the operation of the pendulum, and varying 
the characteristics of the bob (such as increasing the bob mass to overcome variations in crutch 
coupling or streamlining it to decrease air resistance) did 
not affect the operation of the escapement. This allowed a 
practical means of calibrating the individual components. 
Also, the silk threads of the pendulum rod in this design 
were extremely light and strong with little stretch and high 
resistance to rot, and they also minimized friction at the 
pivot point. They were ideal for Huygens. 
 
But the silk threads offered a huge advantage in one other 
way—they allowed the effective length of the pendulum to 
vary so the pendulum is truly isochronic. It had been 
discovered by Marin Mersenne (1588-1648) that the period 
of the pendulum does indeed depend on the amplitude of its 
swing, with isochronism true enough only for small angles. 
Wider swings produce slightly longer periods in the same 
proportion as sin x varies from x as the angle x increases. 
This error is called the circular error or circular deviation. 
The wrapping of the silk threads through the "cheeks" seen 
in the clock diagram effectively shorten the pendulum 
length with its distance along its arc, constraining the 
pendulum to a cycloidal path and providing true 



isochronism. Huygens revolutionized the design of pendulums through such mathematical 
analysis of this and other characteristics of pendulums. 
 

A cycloid is the curve defined by the path of a point on 
the edge of a circle as it rolls along a straight line, as 
shown in Huygens' figure on the left. It is a 
tautochrone, a curve for which a frictionless particl
sliding on it under gravity to its lowest point will ta
the same amount of time regardless of its starting 
position on the curve. By definition an isochronic 
pendulum needs to follow a
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 tautochronic path. 
 
 

 
But let's back up a bit to see how Huygens found this curve. In deriving the relation for the period 
of a pendulum in 1659 equivalent to T = 2π(L/g)1/2, Huygens found he had to make an 
approximation that was only negligible for small amplitudes of oscillation, one that defined a 
curved path of a cycloid with a vertical axis of half the pendulum length L. In one of those 
fortuitous circumstances that occur so frequently in history, he had studied precisely that curve 
for a mathematical challenge issued by Blaise Pascal in 1654. Following this lead Huygens found 
that a body falling from any point along the cycloid will reach the bottom in the same amount of 
time, and the ratio of this time to the time for free fall from rest along the axis of the cycloid is π : 
2. In 1673 he published his masterpiece, the Horologium Oscillatorium, in which he directly 
proved that the cycloid was the needed curve for an isochronous pendulum. 
 
To derive this, Huygens begins by 
presenting the Galilean properties of 
free-fall, i.e., that the distance fallen 
is proportional to both the time 
squared and the velocity squared. In 
addition, the distance fallen in a 
given time is equal to the distance 
traversed in the same time with a 
constant velocity half that of the 
velocity at the end of the fall. After 
proving 20 more propositions too 
detailed to present here, he arrives at 
the figure to the right. Here the arc 
ABC is a cycloid created by point A 
as the circle AVD rolls along the top 
line DC. As translated from the Latin by Blackwell, Huygens states and then proves that: 
 

The time in which a body crosses [spans] the line MN, with the uniform 
velocity acquired after it has fallen through the arc BG of the cycloid, will be 
related [proportional] to the time in which it would cross the line OP, with 
half of the uniform velocity which it would acquire by falling through the 
whole tangent BI, as the tangent ST is related to the part QR of the axis. 

 
After one more proposition in which he considers infinitesimal arcs of travel along the cycloid 
(we'll touch on that later), Huygens arrives at the culmination of Part II of his work: 
 



On a cycloid whose axis is erected on the perpendicular and whose vertex 
is located at the bottom, the times of descent, in which a body arrives at the 
lowest point at the vertex after having departed from any point on the 
cycloid, are equal to each other; and these times are related to the time of a 
perpendicular fall through the whole axis of the cycloid with the same ratio 
by which the semicircumference of a circle is related to its diameter. 

 
where the last clause provides the π : 2 ratio mentioned earlier. 
 
So an isochronous pendulum must be constrained to 
move along a cycloidal path. Huygens needed to find 
the curve (the evolute) that would "unwind" to form 
this cycloid (the evolution or evolvent), and he 
created a new branch of mathematics, the theory of 
evolutes, to do it. The problem reduced to finding a 
curve such that 
 

 Each leaf is tangent to the centerline. 
 Each leaf is perpendicular to the 

cycloidal arc of the pendulum at its point 
of contact. 

 The leaf length to the point of contact with the bob equals the pendulum length, so it 
must have an arc length of twice the diameter of the circle generating the cycloidal 
path of the pendulum, which is half the cycloid measured from its base to vertex. 

 
This leads to the fact that the evolute must be a curve having the same base, height and length as 
the cycloidal path of the pendulum, and Huygens came to the startling realization that the evolute 
is a cycloid generated by the same circle as the cycloid derived for the pendulum path, or in other 
words, the cycloid is its own evolute! (In 1692 Jacob Bernoulli showed that a logarthmic spiral 
also is its own evolute.) 
 
But for a practical pendulum Huygens further proposed that it is necessary to know its “center of 
oscillation,” and using an axiom equivalent to the conservation of energy he defined the center of 
gravity of a pendulum in terms of the modern concept of its moment of inertia. Taking the limits 
of infinitesimal points of mass, he calculated the centers of oscillation of many types of 
pendulums; for example, his spherical bob of radius r on a weightless string produced a center of 
oscillation 2r2/5L below the center. This provides the analysis of the effect of sliding weights on 
pendulums to adjust for (or measure) geographical differences. He derives the practical technique 
of using the period of a known pendulum to find g, the acceleration due to gravity of free-falling 
bodies. Finally, Huygens describes the 
conical pendulum and produces theorems on 
centrifugal force equivalent to (but 
preceding) Newton’s F=mv2/r. This is the 
only place where force appears, as his work 
is based on the concept of conservation of 
energy, still a popular approach to physical 
problems involving complicated motions. 
 
The Horologium Oscillatorium was written 
in the style of geometric physics in which 
quantities are related by proportions 



demonstrated with geometric constructions, a method soon superseded by the analysis tools of 
mathematical physics. But Huygens used infinitesimal time intervals and distances (see figure) 
and extrapolated them to limiting cases, prescient in his anticipation of the development of the 
calculus. Blackwell points out that while later physicists relied on the extensive foundations of 
calculus and mechanics to build arguments, Huygen’s work “may be enjoyed as a beautiful 
specimen of [his] explicit handling of physical concepts and argument.” It is a self-contained 
jewel with a brilliant clarity seen in great works of all fields. 
 

As an example of the practical nature of Huygens, he 
provides in this work an alternative method of drawing a 
cycloid that is shown in the figure on the left. Equal arcs 
AC, CD, and so forth are drawn on a circle whose 
diameter is half the length of the pendulum. Now join 
these points with horizontal lines and construct LM as 
the arc length AF, divided into as many parts as poi
marked off on AF. Then on the horizontal lines mark GO 
and CN with lengths equal to one part of LM, then HQ 
and DP with lengths equal to two parts of LM, etc. The 
curves connecting these points are the required cheek 
curves for the given length of the pendulum. To 
construct LM from the arc length AF, XZ is drawn equ
to the sum of the two chords of half of AF. Then overlay 
XY as the length of the chord of AF. Finally add ZΔ as 
1/3 of YZ. Then if AF is 1/6 or less of the circumference 
of the circle, XΔ equals AF to 1 part in 6000. What 

strikes me about this construction is that it creates an approximate solution, something I would
expect from a geometric construction and surely an indication of how closely Huygens align
his mathematics with the practical construction of mechanical clocks. 
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And maybe that's what makes the Horologium Oscillatorium such a fascinating piece of work. 
Mahoney points out something I hadn't noticed, that there are three layers of meaning in the 
diagrams and sketches of Huygens. In this work we see the overlay of physical shapes (the 
pendulum cord and cheeks) onto geometric constructions proving theorems about those shapes. In 
notes from 1659 in which Huygens first finds the cycloid as the isochronous curve, he also 
overlays an auxiliary curve, a parabola that describes the velocity of the bob as it moves along the 
cycloid. He created "a curve in physical space, the properties of whose normal and ordinate could 
be mapped by way of a mathematical curve so as to generate another mathematical curve 
congruent to a graph of velocity against distance" [Mahoney]. Later we will see that Huygens 
created a mathematical relation that defines isochronous systems, thereby lifting the mathematics 
out of the geometrical physics and anticipating analysis as the new physics. 
 
Emmerson has provided analysis in his recent papers to show that a rigid pendulum suspended by 
a string between cheeks are not in fact isochronous, something derived as well by Benjamin 
Gompertz in 1818. And Huygens was aware of this. Emmerson provides a convincing argument 
that Huygens’ statement in Part IV Proposition XXIV that it is not possible to determine the 
center of oscillation for pendulums (as opposed to bobs) suspended between cycloids was a 
realization that the center of mass approach was not a workable one for a rigid pendulum. “The 
matter is most difficult to explain…,” Huygens says (from the Latin). 
 



In this work Huygens also studied conical pendulums (in 
which the bob swings in a horizontal circle rather than in a 
vertical plane) as well as compound pendulums. He also 
designed pendulums for use aboard ships, a rocking 
platform for which pendulum clocks were never 
successfully produced. For this environment Huygens in 
1672 created a clock that utilized a triangular pendulum, 
that is, one that is suspended from two separated cords and 
thereby constrained to move in one plane only, 
theoretically eliminating most effects of the rocking of the 
ship. The clock itself was suspended first in a ball-and-
socket mount and later on gimbal mounts in an attempt to eliminate rocking in the plane of 
pendulum motion. 
 
Huygens later invented the ingenious tri-cordal pendulum, a ring suspended at three points by 
threads and made to oscillate around its center as shown in his sketches below. Radial placement 
of weights could be used to calibrate the pendulum. From his analysis of conical pendulums he 
discovered that this mechanism would be isochronous if any point of the ring moves along a 
parabola curved around the cylinder defined by the ring. To fine-tune the tri-cordal pendulum to 
this constraint he considered adding cheeks but eventually just went with longer threads. 
 
 

 
 
 
After the publication of his Horologium Oscillatorium, Huygens found that in a cycloidal 
pendulum the force on the bob is proportional to the distance or angle from the neutral position, 
and he deduced that any mechanical system that met this constraint would be isochronous. He 
came up with a number of mechanisms of this type. In 1675 this led him to invent the horizontal 
balance spring as a clock oscillator, in which the force varies 
directly with angle in the same way that force varies directly 
with distance in ordinary springs, although Hooke did not 
publish his law on this until 1678. (There is some debate today 
on whether Hooke actually invented the balance spring.) 
 
But the elasticity of the balance spring suffered under 
temperature variations, and in 1693 Harrison revisited notes he 
made in 1684 to create the “Perfect Marine Balance.” Here the 
spring balance was replaced with something like a physical 
pendulum, a balance bar on a knife edge swinging in a vertical 



plane and controlled by another weight suspended by a thread from cycloidal cheeks that are 
mounted on the balance shaft and oscillate with the balance. To get the returning force to vary 
directly with the angle, he experimented with a weighted chain arrangement and with a float 
partly submerged in oil or mercury. 
 
Meanwhile, in 1670 the anchor escapement was invented, possibly (and certainly claimed) by 
Robert Hooke. Some authors attribute its discovery to Thomas Tompion (1639-1713), but a more 
correct attribution may be to William Clement (1643-1710) [Heldman]. The workings of this 
escapement are outside the scope of this essay, but its effect on pendulum design was significant 
because it was used to reduce the pendulum swing to 4-5°. (It is worth noting here that the verge 
escapement can have as small an angle of escape as desired by designing very long pallet arms 
and a large distance between the horizontal escape wheel and the pivot arbor for the pallets and 
crutch—there are provincial French pendulum clocks, mostly of the 19th century, with this 
arrangment [Heldman]. But certainly the anchor escapement triggered clock designs at the time 
that had small-angle swings.)  
 
A reduced pendulum swing makes possible much longer pendulums for a given horizontal space. 
Clocks with 14ft. pendulums were built, for example, and Tompion produced a clock with a 13ft. 
pendulum hung above the movement. Longer periods are more directly geared to clock time, but 
the small swing provided by the anchor escapement also significantly reduced friction at the pivot 
point. And now that the swing was small, the silk cords that rolled over the cycloidal cheeks were 
replaced with a short strip of flat metal (a brass suspension spring) that simply flexed around the 
shorter arc of the cheeks, decreasing the friction even more. When a metal rod and bob were 
connected to the strip, the entire pendulum manifested a permanent, all-metal construction. It 
might be noted here that Huygens and others looked to long, slow pendulums for stability, but in 
fact more success in pendulum clocks was ultimately had with short, fast-moving pendulums. 
 
The other major problem with pendulums was the change in length, and therefore the center of 
gravity, with temperature. Huygens never fully realized the effect of temperature on his clocks. 
On hot days a pendulum lengthens slightly and the clock slows, and the opposite happens on cold 
days. George Graham (1673/4-1751) attempted to devise a pendulum using the varying expansion 
rate of metals to remain isochronous over temperature ranges. In these designs the expansion in 
temperature of one metal is offset by the expansion of the other, designed so that the net length of 
the pendulum remains constant. Failing to arrive at a suitable design, Graham settled on mercury-
compensated pendulums as his solution. Here the pendulum is designed to hold mercury in a 
glass cylinder in much the same way as a mercury thermometer. When the pendulum length 
increased with temperature, the mercury expanded as well, and vice-versa. When properly 
designed, the net center of gravity of the pendulum remained unchanged regardless of 
temperature variations. Ingenious! Graham also invented the deadbeat escapement that made for 
quite small pendulum arcs. 
 
(As an interesting notion Matthys mentions that if a pendulum is not temperature compensated, 
one might support the bob at the bottom edge. In this way the upward expansion of bob partially 
compensates for downward expansion of pendulum rod.) 
 
John Harrison (1693-1776) approached Graham in 1730 with his invention of the “gridiron 
pendulum.” Graham, a respected member of the Royal Society in London (and considered a 
humble, generous man according to all references I’ve seen), encouraged Harrison to pursue it, 
and it is the design seen in serious grandfather clocks (but faked in most commercial ones sold 
today). The design from a later clock is shown in the figure here. The expansion of brass rods in 
the pendulum compensates for the expansion of iron rods in order to keep the effective length the 



same over temperature. The key is to have a high ratio between the thermal 
coefficients of the two metals used in the gridiron. If the ratio is 2:1, two rods 
can be used to expand downward and one rod upward, and so forth for different 
ratios. Anything less requires more rods to achieve the ratio. The ratio for iron 
and brass is 1.7:1, so Harrison used three rods expanding downward and two 
upward, and included two of these sets to equalize the weight. Since one rod can 
be common to both sets, nine rods were needed. 
 
Well, just about. Harrison was also the first to realize the effect of atmospheric 
density on the period of a pendulum. Colder temperatures produce higher air 
densities, which alter the buoyancy of the bob and therefore the restoring torque. 
Another factor, absolute humidity, affects the density and viscosity and thence 
the rate of energy loss, equilibrioum amplitude and period of a pendulum 
[Emmerson]. From experiments performed with evacuated bell jars, Harrison 
adjusted his gridiron pendulum to account for the effect of temperature-induced 

density changes as well as for thermal expansion! Harrison also first confronted the effect of air 
resistance after he invented the grasshopper escapement—the frictional losses were now so low in 
his clock that the pendulum swung wildly until he attached small vanes to the pendulum. Air 
resistance is important, as over 90% of the drive energy imparted to a pendulum is lost through 
air drag. (Actually, some amount of air resistance can provide stability to the amplitude of the 
pendulum swing.) Through this and many other innovations Harrison claimed a pendulum clock 
accuracy of 1 second per month, an achievement still very much envied (and challenged). 
 
There are other aspects of pendulums that are not considered here. For example, two or more 
pendulums that are lightly coupled (such as in clocks sitting on the same mantelpiece) will 
synchronize their swings, but in the opposite direction. Huygens made the first observation of a 
coupled oscillator in just this way in 1665 while recovering from an illness. For unconstrained 
simple pendulums with the same natural period, such a loose coupling results in a modal 
phenomenon in which the total swinging motion moves back and forth between them. Highly 
coupled oscillators, such as a compound pendulum where one pendulum is hung from the bob of 
another, exhibit chaotic motion. Coulomb used a torsion pendulum in 1784 to quantify the 
electrostatic force, and Cavendish determined the density of the Earth in 1798 using a pendulum. 
Foucault also famously used a pendulum in 1851 to directly demonstrate the rotation of the Earth. 
But in the end my fascination lies with the creative, technical pursuits seen in the early designs of 
pendulum clocks. 
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