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     Nomography, truly a forgotten art, is the 
graphical representation of mathematical 
relationships or laws (the Greek word for law is 
nomos). These graphs are variously called 
nomograms (the term used here), nomographs, 
alignment charts, and abacs. This area of practical 
and theoretical mathematics was invented in 1880 by 
Philbert Maurice d'Ocagne (1862-1938) and used 
extensively for many years to provide engineers w
fast graphical calculations of complicated formu
to a practical precision. Along with the mathemati
involved, a great deal of ingenuity went into the 
design of these nomograms to increase their utility 
as well as their precision. Many books were written
on nomography and then driven out of print with the 
spread of computers and calculators, and it can be 
difficult to find these books today even in libraries. 
Every once in a while a nomogram appears in a 
modern setting, and it seems odd and strangely old-
fashioned—the multi-faceted Smith Chart for 

transmission line calculations is still sometimes observed in the wild. The theory of nomograms “draws 
on every aspect of analytic, descriptive, and projective geometries, the several fields of algebra, and othe
mathematical fields” [Douglass]. This essay is an overview of how nomograms work and how they are 
constructed from scratch. The first part of this essay is concerned with these straight-scale designs, t
second part addresses nomograms having one or more curved scales, and the third part 
describes how nomograms can be transformed into different shapes. 
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     The simplest form of nomogram is a scale such as a Fahrenheit vs. Celsius scale seen on 
an analog thermometer or a conversion chart. Linear spacing can be replaced with 
logarithmic spacing to handle conversions involving powers. Slide rules also technically 
qualify as nomograms but are not considered here. A slide rule is designed to provide basic 
arithmetic operations so it can solve a wide variety of equations with a sequence of steps, 
while the traditional nomogram is designed to solve a specific equation in one step. It’s 
interesting to note that the nomogram has outlived the slide rule. 
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     Most of the nomograms presented here are the classic forms consisting of three or more straight or 
curved scales, each representing a function of a single variable appearing in an equation. A straightedge, 
called an index line or isopleth, is placed across these scales at known values of these variables, and the 
value of an unknown variable is found at the point crossed on that scale. This provides an analog means 
of calculating the solution of an equation involving one unknown, and for finding one variable in terms of 
two others it is much easier than trying to read a 3-D surface plot. We will see later that it is sometimes 
possible to overlay scales so the number of scale lines can be reduced. 

 

Geometric Design 

     We can design nomograms composed of straight scales by analyzing their geometric properties, and a 
variety of interesting nomograms can be constructed from these derivations. Certainly these seem to be 
the most prevalent types of nomograms. 

Parallel Scale Nomograms 

     The figure on the right shows the basic parallel scale 
nomogram for calculating a value f3(w) as the sum of two 
functions f1(u) and f2(v): a

b 
m1f1(u) 

m3f3(w)  f1(u)  +  f2(v)  =  f3(w) 

     Each function plotted on a vertical scale using a 
corresponding scaling factor (sometimes called a scale 
modulus) m1, m2 or m3 that provides a conveniently sized 
nomogram. The spacing of the lines is shown here as a and 
b. Now by similar triangles, [m1f1(u) – m3f3(w)] / a =  
[m3f3(w) – m2f2(v)] / b. This can be rearranged as: 

baseline 

isopleth 
m2f2(v) 

m1f1(u)  +  (a/b) m2f2(v)   =  (1 + a/b) m3f3(w)  

     So to arrive at the original equation f1(u)  +  f2(v)  =  f3(w), we have to cancel out all the terms 
involving m, a and b, which is accomplished by setting m1 = (a/b) m2 = (1 + a/b)m3.  The left half of this 
relationship provides the relative scaling of the two outer scales and the outer parts provide the scaling of 
the middle scale: 

m1 / m2  =  a / b  m3 = m1m2 / (m1 + m2) 

     Also note that the baseline does not have to be perpendicular to the scales for the similar triangle 
proportion to be valid. 

     Now a = b for the case where the middle scale is located halfway between the outer scales, and in this 
case m1 = m2 and m3 = ½ m1. For a smaller range and greater accuracy of an outer scale, we can change 
its scale m and move the middle line away from it and toward the other outer scale. In fact, if the 
unknown scale w has a very small range it can be moved outside the two other scales to widen the scale. 
Additions to u, v or w simply shift the scale values up or down. Multipliers of u, v and w multiply the 
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value when drawing the scales (they are not included in the values of m
in the above calculations). Subtracting a value simply reverses the 
up/down direction of the scale, and if two values are negative their 
scales can simply be swapped. The example on the right shows a 
parallel-scale nomogram for the equation (u–425) – 2(v–120) = w 
designed for ranges 530<u<590 and 120<v<180. 

 

.0<u<3.5 and 1.0<v<2.0. 

g (0.74v) = log w 

 0.58 log (u + 0.64) + log (0.74) + log v = log w 

     We will directly plot the three components here as our u, v and w 
 

 m1  =  6 / [0.58 log (3.5 + 0.64) – 0.58 log (1 + 0.64) ]  =  25.72 

 m2  =  6 / [log 2.0 – log 1.0]  =  19.93 

 m3 = m1m2 / (m1 + m2)  =  11.23 

     So this looks like a lot of work to solve a simple linear equation. 
But in fact plotting logarithmic rather than linear scales expands the 
use of parallel scale nomograms to very complicated equations! The 
use of logarithms allows multiplications to be represented by additions 
and powers to be represented by multiplications according to the 
following rules: 

 log (cd)  =  log c  +  log d log cd  =  d log c 

So if we have an equation such as f1(u) x f2(v) = f3(w), we can replace 
it with 

 log [f1(u) x f2(v)]  =  log f3(w) 

  or, 

log f1(u) + log f2(v) = log f3(w) 

and we have converted the original equation into one without multiplication of variables. And note that 
there is actually no need to solve symbolically for the variable (we just plot these logs on the scales), a 
significant advantage when we come to more complicated equations. 

     Let’s create a nomogram for the engineering equation (u + 0.64)0.58(0.74v) = w as given in Douglass. 
We assume that the engineering ranges we are interested in are 1

 0.58 log (u + 0.64) + lo

 0.58 log (u + 0.64) + log v = log w –  log (0.74) 

scales. To find the scaling factors we divide the final desired height of
the u and v scales (say, 6 inches for both) by the ranges (maximum – 
minimum) of u and v: 
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Let’s set the width of the chart to 3 inches: 

9b 

  b = 1.31 inches and a = 1.69 inches 

mark a baseline 
value of 1.0 and place tick marks spaced out as 25.72 [0.58 log (u + 0.64) – 0.58 log (1.0 – 0.64)] which 

 
s 

uation. 

ike that shown in the figure on the 
right is called an “N Chart” or more commonly a “Z 

e 

 
cale 

a 3-

     By s (u) / m2f2(v) =  Z / [L – Z]. Substituting f3(w) for f1(u) / f2(v) and rearranging 
terms yields the distance along Z for tick marks corresponding to f (w): 

 a / b  =  m1 / m2  = 1.29    so  a = 1.2

 a + b  =  3   so  1.29b + b  =  3  yielding

     We draw the u-scale on the left marked off from u = 1.0 to u = 3.5.  To do this we 

will result in a 6 inch high line. Then 3 inches to the right of it we draw the v-scale with a baseline value 
of 1.0 and tick marks spaced out as 19.93 (log v – log 1). Finally, 1.69 inches to the right of the u-scale 
we draw the w-scale with a baseline of (1.0 + 0.64)0.58(0.74)(1) = 0.98 and tick marks spaced out as 11.23
(log w –  log(0.74).  And we arrive at the nomogram on the right, where a straightedge connecting value
of u and v crosses the middle scale at the correct solution for w, and in fact any two of the variables will 
generate the third. Flexibility in arranging terms of the equation into different scales provides a means of 
optimizing the ranges and accuracies of the nomogram. A larger scale 
and finer tick marks can produce a quite accurate parallel scale 
nomogram that is deceptively simple in appearance, and one that can 
be manufactured and re-used indefinitely for this engineering eq

     It is also possible to create a circular nomogram to solve a 3-
variable equation. Details on doing this from geometrical derivations 
are given in Douglass. 

N or Z Charts 

     A nomogram l

m1f1(u) 

m2f2(v) 

f3(w) isopleth 

Length L 

Z 
Chart” because of its shape. The slanting middle 
scale joins the baseline values of the two outer scales 
(which are now plotted in opposition).  The middl
line can slant in either direction by flipping the 
diagram, and it can be just a partial section anchored
at one end or floating in the middle if the entire s
isn’t needed in the problem, thus appearing, as 
Douglass puts it,  “rather more spectacular” to the 
casual observer. A Z chart can be used to solve 
variable equation involving a division: 

f3(w) = f1(u) / f2(v) 

imilar triangles, m1f1

3

Z  =  L f3(w) /  [(m2/m1) + f3(w)] 
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     The f3(w) scale does not have a uniform scaling factor m3 as before. 
We could have used a parallel scale chart with logarithmic scales to plot 
this division, but the Z chart performs this with linear scales for u and v 
and it was once a real chore to calculate logarithms. But further, the 
linear scales of the Z Chart are much more suitable for combining a 
division with an addition or subtraction than compound parallel scales 
with their logarithmic scales. And of course if the scale for the unknown 
variable is an outside one, we have a Z chart for multiplication.  

     An example of a Z chart is shown here for the equation Q2 = (8R+4) / 
(P-3). To create this, the desired height of the nomogram and the ranges 
of P and R provide their scaling factors m1 and m2 as done earlier. The 
desired width of the chart along with this height defines the length L 
needed for the Q-scale (L2 = W2 + H2). The tick marks for Q are located a
distance from the end calculated from the formula for Z above, where 
f

 

r 3(w) is replaced with Q2.  It is also possible to slide the outer scales up o
down without changing the tick mark spacing of the Z-scale as it also 
rotates due to its endpoints (because similar triangles still result), yielding in a nomogram with a 
perpendicular Z-scale as shown in an example in the second part of this essay. 

Proportional Charts 

     The proportional chart solves an equation in four 
unknowns of the type 

f1(u) / f2(v)  =   f3(w) / f4(t) 

If we take our Z chart diagram and a second isopleth 
that intersects the Z line at the same point as the first, 
we have by similar triangles: 

m1f1(u) / m2f2(v)  =  m3f3(w) / m4f4(t) 

which matches our equation above if we choose the 
scaling of the outer scales such that 

m1 / m2 = m3 / m4

     We then overlay two variables on each outer scale with 
this ratio of scaling factors, as shown in the nomogram to the 
right from Josephs for the approximate pitch of flange rivets 
in a plate girder, where p is the rivet pitch in inches, R is the 
rivet value in lbs, h is the effective depth of the girder in 
inches, and V is the total vertical shear in lbs: p = Rh/V. 

     Another type of proportional chart uses crossed lines 
within a boxed area, as shown below. Again, the scaling 

m1f1(u) 

m3f3(w) m2f2(v) 

m4f4(t) 
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factors for the four variables are given by m1 / m2 
= m3 / m4 where these are related as before to the u, 
v, w and t scales, respectively. (Actually, similar 
triangles still exist and the ratios still hold for any 
parallelogram, not just a rectangle.) 

 

 

 

 

 

 

 

 

 

 

     But there are other types of proportional charts as shown below. In the ones labeled Type 3 an isopleth 
is drawn between two scale variables, then moved parallel until it spans the third variable value and the 
fourth unknown variable. The flange rivet example done in this manner is shown here. In the Type 4 
nomogram the second isopleth is drawn perpendicular rather than parallel to the first one.  

 

 

 

 

 

 

 

Concurrent Scale Charts 

     The concurrent chart solves an equation of the type 
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1/f1(u)  +  1/f2(v)  =  1/f3(w)  

The effective resistance of two parallel resistors is 
given by this equation, and a concurrent scale 
nomogram for this is shown on the right. 

     The derivation is somewhat involved, but in the 
end the scaling factors m must meet the following 
conditions: 

 m1  =  m2  =  m3 / (2 cos A) 

where A is the angle between the u-scale and the v-scale, and also the angle between the v-scale and the 
w-scale. The scaling factor m3 corresponds to the w-scale. The zeros of the scales must meet at the vertex. 
If the angle A is chosen to be 60°, then 2 cos A = 1 and the 
three scaling factors are identical, as is the case in this 
figure. 

     To solve the 4-variable equation 1/f1(u)  +  1/f2(v)  +  
1/f4(t)  =  1/f3(w), the equation is first re-arranged as 1/f1(u)  
+  1/f2(v)  =  1/f3(w)  –  1/f4(t). Then the two halves are set 
equal to an intermediate value f(q). A compound 
concurrent chart is then created in a similar way to other 
compound charts as shown in this figure (here A is chosen 
to be less than 60°). 

4-Variable Charts 

     A 4-variable equation with one unknown can be represented as a combination of two separate charts of 
any type.  The first step is to break the equation into two parts in three variables that are equal to one 
another. For f1(u)  +  f2(v) +  f3(w) = f4(t) and t unknown, we can re-
arrange the equation into f1(u)  +  f2(v) = f4(t) –  f3(w) and create a new 
variable k to equal this sum. Then a blank scale for k is created such t
a parallel scale nomogram for f

hat 

 
1(u)  +  f2(v) = k marks a pivot point on 

the k-scale, then a second straightedge alignment from this point is used
for a parallel-scale nomogram for f4(t) –  f3(w) = k to find f4(t). The 
scaling for u, v and w and the position chosen for the k-scale can be 
optimized to minimize errors at the pivot point for small errors in the 
straightedge alignment. The figure on the right shows a compound 
parallel scale nomogram. Below are examples from Levens of 
compound nomograms of Z charts and concurrent and proportional 
charts. A key often provides instructions on the use of a compound 
nomogram as shown in the second figure. Of course, this concept can be 
extended to equations with additional variables, where color coding 
would be helpful. 

7 



 

Curved Scale Charts 

     It is possible to geometrically derive relationships for nomograms that have one or more curved scales, 
but the design of these more complicated nomograms is so much easier using determinants. Designing 
nomograms with determinants is the subject of the second part of this essay. 

 

Designing with Determinants 

     I’ve never had the slightest interest in matrices until I started researching this topic of nomography. I 
took a college class in linear algebra and found it tedious. But now I find that a brief knowledge of 
determinants offers a powerful way of designing very elegant and sophisticated nomograms. A few basics 
of determinants are presented here that require no previous knowledge of them. Then we will see how 
determinants can be manipulated to create extraordinary nomograms. 

     A matrix consists of functions or values arranged in rows and columns, as shown within the brackets 
in the figure on the right. The subscript pair refers to the row and column of a matrix element. A 
determinant represents a particular operation on a matrix, and it is denoted by vertical bars on the sides 
of the matrix. The determinant this 3x3 matrix is given by 
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a11a22a33 + a12a23a31 + a13a21a32 – a13a22a31 – a11a23a32 – a12a21a33

     But there are visual ways of deriving it. In the first figure the 
first two columns of the determinant are repeated to the right of the 
original, and then the products of all terms on diagonals from upper 
left to lower right are added and the products of all terms on 
diagonals from upper right to lower left are subtracted. A 
convenient mental shortcut is to find these diagonal products by 
“wrapping around” to get the three components of each term. Here 
the first product we add is the main diagonal a11a22a33, then the 
second is a12a23a31 where we follow a curve around after we pick 
up a12 and a23 to pick up the a31, then a13a32a21 by starting at a13 and 
wrapping around to pick up the a32 and a21. We do the same thing 
right-to-left for the subtracted terms. This is much easier to 
visualize than to describe. Determinants of larger matrices are not 
considered here. 

     There are just a few rules about manipulating determinants that 
we need to know: 

1. If all the values in a row or column are multiplied by a number, the determinant value is 
multiplied by that number. Note that here we will always work with a determinant of 0, so we can 
multiply any row or column by any number without affecting the determinant. 

2. The sign of a determinant is changed when two adjacent rows or columns are interchanged. 

3. The determinant value is unchanged if every value in any row (or column) is multiplied by a 
number and added to the corresponding value in another row (or column). 

     That’s it. Now consider the general diagram to the right 
from Hoelscher showing three curvilinear scales and an 
isopleth. Similar triangle relations give 

    (y3-y1)/(x3-x1)  =  (y2-y1)/(x2-x1)  =  (y3-y2)/(x3-x2) 

The first two parts of this can be rewritten as a cross product: 

 (x3-x2) / (y2-y1)  =  (x2-x1) / (y3-y2) 

and when this is expanded it is equal to the determinant 
equation 

 
1
1
1

33

22

11

yx
yx
yx

  =  0 
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     We get this result regardless of which pair we choose to use in the cross product. The x and y elements 
can be interpreted as the x and y values of f1(u), f2(v) and f3(w) if we don’t mix variables between rows 
(the first row should only involve u, etc.) and if the determinant equation is equivalent to the original 
equation. This is the standard nomographic form. Here y is not expressed in terms of x as we normally 
have when we plot points at (x,y) coordinates, but rather x and y are expressed in terms of a third variable, 
that is, x1 and y1 are expressed in terms of a function of the variable u, x2 and y2 are expressed in terms of 
a function of the variable v, and x3 and y3 are expressed in terms of a function of the variable w. These are 
called parametric equations. One way to plot them is to algebraically eliminate the third variable between 
x and y to find a formula for y in terms of x. Another way is to simply take values of the third variable 
over some range, calculate x and y for each value, and plot the points (x,y)---a more likely scenario when 
we have computing devices. 

     Let’s consider the equation (u + 0.64)0.58(0.74v) = w that we used earlier to create a parallel scale 
nomogram. We converted this with logarithms to 0.58 log (u + 0.64) + log v = log w + log (0.74), or 

0.58 log (u + 0.64) + log v – [log w + log (0.74)]  =  0 

We could have grouped log (0.74) with any term, but we’ll stay consistent with our earlier grouping. This 
is an equation of the general form f1(u) + f2(v) – f3(w) = 0, so let’s find a determinant that produces this 
form. We want each row to contain only functions of one variable of u, v or w, so we’ll start with f1(u) in 
the upper left corner and 1’s along its diagonal so that the first term of the determinant will be f1(u). 

 
1??
?1?
??)(1 uf

  =  0 

Now let’s set the lower left corner to f3(u) and the upper right corner to 1 so the last term of the 
determinant will be –f3(w): 

1?)(
?1?
1?)(

3

1

wf

uf
  =  0 

Now we can place f2(v) in the middle row somewhere and fill in the rest of the determinant so the terms 
involving these elements end up simply as f2(v). Here are a few possibilities that work: 

11)(
01)(
10)(

3

2

1

wf
vf
uf

  =  0 or      
10)(
01)(
11)(

3

2

1

wf
vf
uf −

  =  0     or      
10)(
11)(
01)(

3

2

1

wf
vf
uf −

  =  0 

     But the second determinant is simply the first one after the third column is subtracted from the second 
column and the third determinant is simply the second one after the third column is added to the second 
column. These are operations that will not change our determinant equation as described in our earlier list, 
so they are all equivalent. 
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     Now we want the flexibility to scale our f1(u) and f2(v) by m1 and m2 calculated for parallel scale 
charts as the desired height of the nomogram divided by the ranges of the functions. If we take the first 
determinant of the three possible ones shown, notice that we can introduce the scaling values without 
changing the determinant equation if we write it as 

 

123

22

11

/1/1)(
01)(
10)(

mmwf
vfm
ufm

  =  0 

     So now we have to convert this to the standard nomographic form having all ones in the last column 
(and continuing to isolate variables to unique rows). First we add the second row to the third row, where 
1/m1 + 1/m2 = (m1+m2)/m1m2: 

21

21
23

22

11

/1)(

11)(
10)(

mm
mm

mwf

vfm
ufm

+
  =  0 

     Then we multiply the bottom row by m1m2/(m1+m2) and swap the first two columns so that the y 
column (the middle column) contains the functions: 

1)(

1)(1
1)(0

3
21

21

21

1

22

11

wf
mm

mm
mm

m
vfm
ufm

++

  =  0 

and we have the determinant in standard nomographic form. The first 
column represents x values and the second column represents y values of 
the functions. The scaling factors of m1 and m2 result in a scaling factor m3 
for the w-scale of m1m2/(m1+m2) as we found earlier from our geometric 
derivation. We had calculated m1 = 25.72 and m2=19.93 before, giving 
m3=11.23. This determinant also shows that we place the u-scale vertically 
at x=0 and the y-scale vertically at x=1, with the w-scale at x= m1/(m1+m2) 
= 0.5634, but in fact we can multiply the first column by 3 to get a scale of 
3 inches, and in this case the w-scale lies vertically at x=1.69 inches, and s
we end up with exactly the same nomograph we found earlier using 
geometric methods. 

o 

     This was a bit of work, but we have found a universal standard nomographic form for the equation f1(u) 
+ f2(v) – f3(w) = 0 including scaling factors. 
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     Let’s derive a Z chart for division using determinants. For v = w/u, we rearrange the equation so the 
right-hand term is 0, or uv – w = 0. One possible determinant we 
can construct is 

10
10
01

w
v

u

−
  =  0 

which graphs to the nomogram on the right, a Z chart with a 
perpendicular middle line. A different determinant would result 
in a Z chart of the more familiar angled middle line. An 
interesting aspect of such a chart is that the u-scale and v-scale 
have different scaling factors despite the fact that they can be 
interchanged in the equation. 

     There is a definite knack to all of this, and at this point I’d l
nomography by Winchell D. Chung, Jr. at 

ike to recommend the webpages on 
this site. His webpages are quite interesting to read---there are 

quite a few examples of nomograms, and the determinant approach is used throughout. In particular, he 
provides other examples of expressing an equation into determinant form here. He also gives a few 
examples of converting the determinant to the standard nomographic determinant form here, where 
examples 2 and 3 are from Hoelscher. Most importantly, for equations of several standard formats Chung
also reproduces tables that map these equations directly to standard nomographic determinant forms 

 
here. 

     Determinants are most useful when one or more of the u, v and w scales is curved. The quadratic 

 

equation w2 + uw + v = 0 can be represented as the first equation below, and dividing the last row by w-1 
we immediately arrive at the standard nomographic form shown in the second equation: 

  =  0   

1
11

10
11

2

−−

−

w
w

w
w
v
u

1
10
11

2 −

−

www
v
u

  =  0 

     The u-scale runs linearly in the 
1. 

scale 

o 

    x/y = w 

    y  =  (x/y) / [(x/y) – 1]  =  x / (x – y) 

negative direction along the line y=
The v-scale runs linearly in the 
positive direction with the same 
along the line y=0. The x and y values 
for the curve for w can be plotted for 
specific values of w (a parametric 
equation), or w can be eliminated t
express the curve in x and y as 
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resulting in the figure at the right in which the positive root w1 of the quadratic equation can be found on 
the curved scale (the other root is found as u – w1). 

     Hoelscher presents the equation for the projectile trajectory Y =  X tan A  -  gX2 / (2V 2cos2A) where 

e plotted for different values of A. For an angle of 45º, 

his is shown in the first equation below, which can be manipulated into the 
standard nomographic form shown in the second equation: 

0

A is the initial angle, V0 is the initial velocity, and g is the acceleration due to gravity. There are four 
variables X, Y, V0 and A, so nomographic curves ar
the equation reduces to 

 Y  =  X  –  0.0322X2 /V0
2

     One determinant for t

1
1

1
1

11
X

XY
V

0
10/0322.0 2

0

  =  0  
10/0322.0 2

0

Y
V

11
22 ++ XX

X
  =  0 

     Hoelscher assumes -2000<Y<7000 ft nd 
800<V0<4000 fps and a chart of 5 inches square, 
so after some more manipulations (including 

a

the swapping of the first two columns) we 
arrive at the final form: 

    

1
200

100
200

1000
15.05
1/0322.00 2

0

Y
V

  =  0

22 ++ X
X

X

 

s is shown as the curve for A= ng 
with curves for other angles in this figure (a 
grid nomogram such as this can be used to 

s). 

v
lap exactly.  The equation for the equivalent radius of the 

st bearing is R = 2/3 [R1
3 – R2

3] / [R1
2 – R2

2] or 3RR1
2/2 

 

Thi 45º alo

handle an equation with more than 3 variable

     It’s possible to have two or three scale cur
possible to have two or all three curves over
friction moment arm for a hollow cylindrical thru

es depending on how the determinant works out, and it is 

– 3RR2
2/2 – R1

3 + R2
3 = 0, yielding the determinant 

121
130

121
22

2
R

R
R

12
1

R
R

  =  0 
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     Here the R1 and R2 scales lie exactly on the same curve. They could have separate tick marks on this 
curve if they had a different scale, but here they have the same scaling factor. The figures here show the 

lotted nomogram for perpendicular x and y axes, and also for oblique axes that expand the R-scale to the 
the nomogram er accuracy. 

 

inant for the equation . 

p
full height of  for great

 

 

 

 

 

 

 

 

Otto provides an interesting alternate determ f1(u) + f2(v) + f3(w) = f1(u) f2(v) f3(w)
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  =  0 

     The nomogram for the particular equation of this type 
u + v + w = uvw is shown in this figure, where again two 
of the three scales overlap. Eliminating rom the x 
and y elements in the first row we find that u lies along 
the circle given by (x - ¼)2 + y2 = 1/(42), and this is 
correspondingly true for v as well (although in general 

at c

 f1(u) f

we have to separately calculate x and y tick marks based 
on f1(u) or f2(v) values).  

Finally, Otto describes a very interesting determinant th
= 1. 

an be created for the equation f1(u) f2(v) f3(w) 
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     For uvw=1, all three scales coincide and have the same 
scaling factor, and it turns out that the equation for this curve 
is x3 + y3 folium of Descartes). This 

Transformations 

     In addition to providing sophisticated nomograms, the use of determinants offers one other huge 
ling factors of variables have to be manipulated to get a nomogram that uses all 

the available area and yet stretches portions of the curves that are most in need of accuracy; alternatively, 

 

     We can translate the nomogram laterally, which is equivalent to translating the x-y axes to new x'-y' 
c to all determinant elements in the x column and d to all determinant elements in the y 

column to shift the axes left by c and down by d (or in other words shift the nomogram right by c and up 

yn'  =  yn + d 

Rotation 

     We can rotate the nomogram about the origin of the axes by an angle θ (positive for counter-clockwise 
 replacing each determinant element xn in the x column and the each determinant element yn in 

the y column with 

n n θ  –  yn sin θ 

Stretch 

 – xy = 0 (called the 
nomogram is shown as the curled figure to the right. 

 

advantage. Often the sca

there may be a need to bring distant points (even at infinity) into a compact nomogram. This can be done 
experimentally (Chung suggests using a spreadsheet) or by projecting the nomogram in any manner that 
maps points into points and lines into lines. This can be tedious using geometric formulas, but it can be 
done by multiplying the determinants by standard translation and rotation matrices. Let’s look at the types
of transformations that can be used for a nomogram, based on the extended presentation in Epstein. 

Translation 

axes. We can add 

by d). 

xn' =  xn + c 

rotation) by

xn' =  xn sin θ  +  yn cos θ 

y '  =  x  cos 
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     We c he x direction by multiplying each determinant element in the x 
column by a constant, and likewise for the y direction. 

x ' =  cx

Shear 

     Shear is a slewing of perpendicular axes to oblique axes or 
vice-versa. This is perhaps best understood by referring to this 

owing a shear from one set of axes x-y to another set x'-y' 
' 

     Shear can be used to convert a traditional Z chart with a slanting m
perpendicular middle line and vice-versa. It could have been used to convert the 
earlier n lent friction radius to plot it relative to the oblique x'-y' axes rather than to the 

igure below, a projection uses a point P (called the center of perspectivity) to 
project rays through points of a nomogram in the x-y plane to map them onto the z-y plane (also called 

), foreshortening or magnifying lines in varying amounts in the x' and y' directions. It is also 
e 

  (yP xn – xP yn) /  (xn – xP) 

 

 

an stretch a nomogram in t

n n

yn'  =  dyn

figure sh
in which the x' axis is canted at an angle θ to the x axis but the y
axis aligns with the y axis. For this case, 

xn'  =  xn cos θ 

yn'  =  yn + xn sin θ 

iddle line to one with a 
determinant for the 

omogram of equiva
perpendicular x-y axes. 

Projection 

     Referring to the first f

the x'-y' plane
possible for P to lie above the x-y plane, where rays from points on the nomogram pass through P to th
x'-y' plane as shown in the second figure. (This can be used to convert a nomogram in the shape of a 
trapezoid to a rectangular one, changing scale resolutions to maximize the available space, but we will see 
an easier method later.) In either case, for a P location (xP,yP,zP) and a nomogram x-element xn and y-
element yn, 

xn'  =  zP xn / (xn – xP) 

yn'  =
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     The line BD under P in the second figure never maps onto the x'-y' plane because it is parallel to that 
plane—it is a “straight line at infinity” and will become important in our example below. 

 q2 – aq + b = 0 
. Unfortunately, he provides only the final nomogram, so I have taken 
h the details of each step while creating my own intermediate 

A Transformation Example 

     Epstein outlines a sequence of transformations to convert a nomogram for the equation
to a more convenient circular form
up his challenge and traced throug
nomograms. These nomograms were created using the freely-available LaTeX typesetting engine and the 
free vector drawing package TiKz, which supports plotting parametric functions and has enough 
flexibility to draw and nicely label tick marks on the curves. Excel and MATLAB, for example, can plot 
parametric functions but do not appear to support labeled tick marks on the curves corresponding to the 
parametric variable. Chung uses Python code to create his nomograms (described here) and there is a 
Python program to plot nomograms here that I have not evaluated. An online tool to create custom, 
interactive parallel scale nomograms only can be found here. I find that the LaTeX code is quite simple 
and very flexible and is especially convenient for those of us who already use LaTeX to create technical
articles. My LaTeX code that created the nomograms below can be found 

 
here. 

     A determinant representing the equation q2 – aq + b = 0 can be constructed (and verified it by 
multiplying it out) as 

10
11
1)1/()1/( qqqq −− 2

b
a   =  0 

(Note: In all determinants in this es  x elements 
are in the first column and the y elements in the second 
column, which follows most presentations but is 

inal 
 found in practice by taking 

 

say the

reversed from Epstein’s.) 

     This nomogram is plotted in the figure to the right 
(the x-y axes and grid would be deleted from the f
nomogram). The q-scale is
a range of q values and calculating x = q / (q+1) and y 
= q2 / (q-1) as a coordinates to plot, but if we eliminate
q between the two parametric equations we arrive at x2 
– xy + y = 0, demonstrating that the q-scale is in fact a 
hyperbola. A straightedge placed across any two values 
of a and b will intersect the q-scale in two points if 
there are two real solutions, one point if there is a 
double real root, and no points if there are no real roots. 
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However, the layout of the q-scale is problematic, as the two halves stretch toward infinity very quickl
and it is not possible to accurately locate q points for isopleths near the asymptotes of the hyperbola. So 
we will transform this nomogram into one in which the q-scale is finite. The labels for the tick marks wi
not be displayed on the following plots, but the tick mark spacing and colors will provide a guide for how 
the curves are re-mapped. 

y 

ll 

     First we will rotate this nomogram clockwise by 45° (or θ = -45°) and stretch it in both dimensions by 

/2, 

xn' =  xn  +  yn  

yn'  =  – n +  yn  

Performing this substitution for the x element and y 

21/2 for a reason that will become apparent in the next 
transformation. Since cos -45° = 2-1/2 and sin 45° = -2-1

the earlier rotation formulas after the stretch become 

x

element of each row of the determinant, we arrive at 

1
111
1)1/()( 2

bb
aa

qqqq
−+

−+
  =  0 

which is plotted on the right. 

     We rotated the nomogram because we wanted a 
 a 

hat is, 

xn'  =  xn / (xn – 1) 

yn'  =  (-xn – yn) /  (xn – 1) 

and the determinant becomes 

vertical line (say, x=1) that does not intersect the 
hyperbola. A projection transformation can convert a scale with two branches like this hyperbola into
single connected scale (an ellipse) if a straight line 
separating the two branches is projected to infinity, t
if the line is parallel to the y-z axis (which x=1 is) and the 
projection point P is located directly above or below it in 
its z value (as the line BD in the earlier projection figure). 
Choosing P = (1,-1,1), the earlier projection formulas 
become 

1)1/(2)1/(
12/)1(
1)1/(2)1/()( 2222

−−−
−+

+−++

bbbb
aa

qqqqq
  =  0 

and the ellipse magically appears in the plot on the right. 
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     Now let’s shear the nomogram so the green b-scale lies 
on the y-axis while keeping the red a-scale parallel to the x-

n  + yn / 2 

and the determinant becomes 

axis. The shear formulas are slightly different as we are 
shearing to the y-axis, and for a b-scale slope of –½ they 
reduce to: 

xn'  =  x

yn'  =  yn

1)1/(20
12/1
1)1/(2)1/( 22 −+ qqq 2

−−
−

+

bb
a

q
  =  0 

which is plotted on the right. 

ogram upward by 2 to place 
the intersection point on the origin. 

    

     Now we’ll translate the nom

xn'  =  xn

yn'  =  yn + 2 

1)1/(20
10/1
1)1/(2)12 + q/( 2

−−

+

b
a

qq
  =  0 

This is plotted on the right.  

 nomogram in the y direction by 
a factor of 2 to get a circular scale for q. 

 2 

    

     And finally we shrink the

 xn'  =  xn

yn'  =  yn /

1)1/(10
10/1
1)1/(1)12 + q/( 2

−−

+

b
a

qq
  =  0 
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     The figure on the left below is the plot of my final determinant, and by changing the scales of the axes 
we arrive at Epstein’s figure on the right. 

 

 

     The entire range of q from -∞ to +∞ is now represented in a finite area, and certainly the range less 
than 1.5, which veered to infinity in our original nomogram, is nicely accessible. The larger numbers are 
not as accessible, but the ranges can be skewed to spread 
out any range by multiplying the original equation by a 
constant. We could have stopped at any of the nomograms 
containing an ellipse, but it is easier to draft the circle. An 
elliptical nomogram for the quadratic equation ax2 + bx + c
= 0 is shown here for comparison. 

 

he 
s. 

of q2 – aq + b = 0, then the equation can be written as (q – q1)( q – q2) = 0. Multiplying this out and 

     It’s interesting to play around with a straightedge on t
circular nomogram we derived above to see that it work
In particular, an isopleth through an a-value and b-value 
will just touch the q-circle if the discriminant from the 
quadratic formula is 0 (for the equation Ax2 +Bx + C = 0, 
the discriminant is the value B2-4AC whose square root is 
taken in the quadratic formula, or a2-4b here). When the 
discriminant is less than zero the isopleth misses the q-
circle, denoting no real roots, and when it is greater than 
zero it crosses two real roots on the q-circle. 

     And in fact if you eliminate the a-scale, then the b-scale 
represents the product of two numbers on the q-circle. This is because if we have two solutions q1 and q2 
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equating terms to the original equation, we find that b = q1q2 and a = q1+q2. The geometric layout of t
nomogram is really the traditional meaning of a circular nomogram (two scales on the circle, one on a 
nearby line), and it turns out that any three-line parallel scale nomogram can be transformed into a 
circular nomogram. Generally the two scales on the circle do not have the same values, so tick mark
both sides of the circumference are needed. 

his 

s on 

     The transformations we have discussed can also be represented as matrices. Transformations are 
o or 

e 

performed by matrix multiplication of the transformation matrix and the nomogram determinant. Tw
more transformations can be combined by multiplying their transformation matrices. It often happens 
after such a matrix multiplication that the nomogram determinant needs to be manipulated again into th
standard nomographic form. For example, the transformation matrices for rotation and projection are 

                 and                 

P

PP

P

x
zy

x

−

−

00
0
00

 
100
0cossin
0sincos

θθ
θθ − 

     It is possible to use matrix multiplication to map a trapezoidal shape (such as the boundaries of a 

 
nomogram that does not occupy a full rectangle) into a rectangular shape. This would increase the 
accuracy of the scales that can be expanded to fill the sheet of paper. Consider the following matrix
multiplication: 

333231

232221

131211

kkk
kkk
kkk

     x      
1
1
1

ww

vv

uu

yx
yx
yx

 

     By the rules of matrix multiplication and some manipulation of the result, each y' and x' in the 

 x' =  (xk11 + yk21 + k31) / (xk13 + yk23 + k33) 

12 22 32 13 23 33

     Now if we want to remap an area such that the points (x1,y1), (x2,y2), (x3,y3) and (x4,y4) map to, say, the 

hic 

     There are non-projective transformations as well that can be used to create nomograms in which all 
y 

 

resulting matrix can be represented as 

 y' =  (xk  + yk  + k ) / (xk  + yk  + k ) 

rectangle (0,0), (0,a), (b,0) and (b,a), we insert the final and initial x’s and y’s into the formulas above, 
giving us eight equations in nine unknown k’s. So we choose one k, solve for the other eight k’s and 
multiply the original nomogram determinant by the k matrix and convert it back to standard nomograp
form, then replot the nomogram---a fun way to spend an afternoon. 

three scales are overlaid onto one curve (although the third will have different tick marks). This is highl
mathematical and involves things called Weierstrass’ Elliptic Functions, so Epstein is a resource if there 
is interest in the details. Epstein provides nomograms of this sort for the equation u + v + w = 0 (which 
can be generalized to any equation of this form, including ones in logarithms). In the first figure below, 
the isopleth must cross two numbers on one scale and a third number on the other overlaid scale (such as
u = +0.2524, v = +0.3842 and w= -0.6366). In the second figure the isopleth crosses two curves 
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containing three scales. Ignore the numbers on the x-axis and y-axis---these relate to the function
derive the nomograms. I’m showing these simply to demonstrate the advanced mathematics that was 
targeted at nomographic construction at one time. 

 used to 

 

 

 

The Status of Nomograms 

st. Chung’s interest grew from his desire to provide 

ere

     Today the use of nomograms seems scattered at be
quick and easy calculations of hit strength, etc., in strategic wargaming. There are many simple 
nomograms that exist for doctors to quickly assess attributes and probabilities, such as here (or h  if you 
can’t draw a line), here, here, and here. A Body Mass Index (BMI) nomogram is common (such as here) 
and is derived in this PowerPoint presentation on nomograms. There are also some engineering 
nomograms found here and there online (such as here, here, here, here, here, and there). 
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     I first heard of nomograms in the 
context of sundials. As Vinck and Sawyer 
describe (see references), Samuel Foster 
published a treatise in 1638 titled “The Art 
of Dialling” that contained a dialing scale 
for the construction of horizontal, vertical 
and inclining sundials as shown in the 
figure from Vinck to the right. Foster’s 
construction scale is actually a circular 
nomogram, a tool discovered nearly 300 
years earlier than its attributed discovery by 
J. Clark in 1905! Sawyer writes that Foster 
did write of the more general computing 
applications of his scale. Here an isopleth 
from one point on a perimeter scale through 
a point on the middle scale will cross their p
trigonometric scaling one can lay out hour lines on a wide variety of sundials. Certainly many sundial 
designs (nearly all) rely on graphical plots with the gnomon shadow or a weighted, hanging string servi
as the isopleth. Card dials are particularly complicated because they map a 3-D geometry to a 2-D
as you can see on 

roduct on the other perimeter scale, and with suitable 

ng 
 plane, 

this webpage. Sawyer has designed a few dials that employ nomograms, two of which
are shown below. Masse uses the same projection transformation method as we did to create a sundial in
which the gnomon tip shadow during the day traces a circle rather than a hyperbola on the face of the dia
My interest in nomography (including the transformation techniques) and my efforts to plot nomograms 
using the LaTeX typesetting engine are partly due to my intention to create new sundial designs based on 
nomograms. 

 

 
 
l. 
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     The use of analog graphic calculators is actually much older---the quite complicated grids and curves 
on old astrolabes and quadrants, as shown below, effectively serve as nomograms. There are also curves 
on the backs of most astrolabes to convert equal hours to unequal hours using the alidade (the sight on the 
back) as an isopleth, and the qibla diagram on the back of Islamic astrolabes provides the direction to 
Mecca for any hour of any day by using the alidade when the astrolabe is aligned correctly. 

 

 

 

 

 

 

 

     And I think there could be more applications today. I was at a picture framing store while I was 
writing this essay to get a matte board cut as a frame for some calligraphy created by my son. The pricing 
was based on three variables (the window height, the window length and the border width) and possibly 
the matte board type. Everyone who came up to get a price for a certain configuration or a variety of 
configurations had to wait while the clerk wrote down the three parameters, punched them into some 
formula on a calculator, and referred to a chart to find the corresponding price in quarter-dollars. I was 
thinking the whole time that having photocopies of a nomogram laying around would let customers use a 
straightedge (and there are a lot of those in a framing store!) to figure the pricing out and quickly optimize 
their parameters without having to wait in line, and it would certainly be faster for the clerk. 

     But nomograms have their own intrinsic charm. As a calculating aid a nomogram can solve very 
complicated formulas with amazing ease. And as a curiosity a nomogram provides a satisfying, hands-on 
application of interesting mathematics in an engaging, creative activity. 
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