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Individuals with preternatural abilities to calculate 
arithmetic results without pen, paper or other instruments, 
and to do so at astonishing speed, are the stuff of 
mathematical and psychological lore. These “lightning 
calculators” were sometimes of limited mental ability, 
sometimes illiterate but of average intelligence, and 
sometimes exceptionally bright, this despite the popular 
notion of the idiot savant. The techniques used by these 
people are not generally well known. In fact, despite 
claims by educators that acquiring a mental facility with 
arithmetic operations is essential to a student’s 
mathematics education, I see little in the textbooks other 
than simple estimations based on rounding values, surely 
the most basic and least interesting mental task. The field 
of mental calculation may not be a lost art per se, but in 
this digital age it most certainly is a neglected one. 
 
Part I of this essay attempts to take a fresh look at both 

historical and modern lightning calculators. Part II describes classic and modern methods of 
mental calculation. And finally, Part III demonstrates as a cautionary tale the shallow and 
deceptive nature of most media coverage of lightning calculators, an important consideration in 
analyzing reports on them. 
 
The subject of lightning calculation has been an interest of mine for many years. Although I’m 
certainly not a lightning calculator, as a graduate teaching assistant in physics in the early 80’s I 
enjoyed mentally calculating the results of problems to quite high accuracy while the students 
were working their calculators, and I would typically end the semester with a class on such 
methods. In 1988 I started gathering material for a book  on methods of high-precision mental 
calculation of arithmetic as well as elementary functions such as logarithms, exponentials and 
trigonometric functions (Dead Reckoning: Calculating Without Instruments, 1993). A few years 
ago I started my main website MyReckonings.com mainly to devote a portion of it to notes and 
errata for the book, as well as serve as a repository for papers I’ve written on topics of mental 
calculation. The website area devoted to the book is 
http://www.myreckonings.com/Dead_Reckoning/Dead_Reckoning.htm and the page devoted to 
additional papers and is found at 
http://www.myreckonings.com/Dead_Reckoning/Online/Online_Material.htm, where some of the 
links in this essay are directed. 
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Part I: The Players 
 
The history of lightning calculators, at least to 1983, is 
presented most comprehensively in Steven B. Smith’s 
book, The Great Mental Calculators: The Psychology, 
Methods and Lives of Calculating Prodigies Past and 
Present. This is a fascinating read and an honest 
attempt to analyze the capabilities and methods of a 
number of these individuals. Smith notes that isolation 
(at least mental isolation), generally in children, is a 
condition favoring the development of this ability, and 
it’s hard to argue with that. He describes a gamut of 
lightning calculators who run the spectrum of mental 
acuity. 
 
So let’s see who we have in the book. Grouping people by their overall mental acuity 
is a dangerous sport prone to misinterpretation and error (for example, it is impossible 
for me to classify Thomas Fuller (1710-1790) because he was a victim of the slave 
trade in America). As a rough interpretation by me from Smith’s book, among those 
that seem to be of low intelligence (which represents a large range) 
are 
 

� Jedidiah Buxton (1702-1792) 
� Henri Mondeux (1826-1861) 
� Jacques Inaudi (1867-1950) 

 
Among those who seem of average intelligence are 
 

� Zerah Colburn (1804-1839) 
� Johann Martin Zacharias Dase (1824-1861) 
� Pericles Diamandi (1868- ) 
� Arthur Griffith (1880-1911) 
� Salo Finkelstein (1896/7-?) 
� Maurice Dagbert (1913-?) 

 
Those who seem to have exceptional intelligence include 
 

� George Parker Bidder (1806-1878) 
� Truman Henry Safford (1836-1901) 
� Frank D. Mitchell 
� Gottfried Ruckle (1879-1929) 
� Wim Klein (1912-1986) 
� Hans Eberstark (1929- ) 
� Shyam Marathe (1931- ) 
� Shakuntala Devi (1932- ) 
� Arthur Benjamin (1961-) 

 
And those with ability in this area who left a permanent mark on mathematics and 
science certainly include 
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� Alexander Craig Aitken (1895-1967) 
� John Wallis (1616-1703 ) 
� Andrè Ampere (1775-1836) 
� Leonhard Euler (1707-1783) 
� Karl Frederich Gauss (1777-1855) 
� John von Neumann (1903-1957) 

 
So in fact we see a predominance of ability in those 
with higher mental acuity, and it turns out that as we 
proceed to later names here we find that these abilities remained or were 
developed in adulthood. Savants are certainly more fascinating because of 
their lack of ability in other areas, but the talents of those without disabilities 
is certainly in contrast to the popular conception of lightning calculators. 
 
Watch a child who is doing math homework—when they are 
calculating the answer they generally get quite physically 
agitated, tapping a pencil, shaking or hitting their heads, 
standing up and sitting down, talking, etc. It’s quite striking when you are looking for it, a strange 
association between mathematical reasoning and motor functions that makes you wonder if the 
standard, ultra-quiet testing environment in school is really ideal. Some (probably most) lightning 
calculators such as Inaudi, Colburn, Safford, and Benjamin, were or are quite agitated while 
performing. These are termed auditory calculators, but there are visual calculators as well 
(Diamondi, who had a “photographic” memory, Ruckle, Marathe, Dase, etc.) and those who don’t 
fit neatly into either category (Klein, Aitken). There are also those who experience synaesthesia, 
seeing colors when hearing or visualizing numbers (such as Daniel Tammet, who also visualizes 
“landscapes” and “spirals” of numbers. Smith even describes a “tactile” calculator. 
 
Another topic of great interest and historical misunderstanding concerns the calculation process 
itself. It is often assumed that the results are spontaneously produced by an unconscious, 
mysterious and instantaneous process. Smith concludes that this is false, that the calculation 
proceeds through a sequence of operations that is conscious or semi-automatic, much like spoken 
language or touch typing.  The brain scan figures that are shown later, in fact, show in red the 
areas of the brain used by the modern lightning calculator Rüdiger Gamm (in green and red) 
compared to several non-expert calculators (in green) as described in a paper at 
http://stepanov.lk.net/mnemo/gamm.html . 
 
So how fast were/are these lightning calculators? The short answer is that the reported times, 
those that have any validity at all, are all over the map. Often those who report on times did not 
recognize attributes of specific problems that led to easy solution, or based their reports on 
second-hand or promotional material, or ignored delay tactics such as writing down or repeating 
the problem. Often the reports don’t indicate when timing began and stopped, and it often goes 
unreported whether the problem was in sight during the calculation and whether the answer was 
produced digit-by-digit or as a complete solution. Some times are considered beyond credibility 
or markedly inconsistent with the difficulties of various questions. 
 
Smith attempts to sort through the available data on historical calculators, a seemingly frustrating 
enterprise. A decent set of tests were conducted by the noted psychologist Alfred Binet in 1894 
and there was so much confusion on the best way to measure response times that a device that 
traced respiration on a revolving cylinder was settled on, but even Binet didn’t record whether the 
answers were written down or if the first or last digit of the answer was the initial trigger. Inaudi 
took an average of 2.0 seconds for 2-digit by 2-digit (2x2) multiplications, 6.4 seconds for 3x3 

Pictures from top: Jedidiah Buxton, Jacques Inaudi, 
Wim Klein, Wim Klein, T. H. Safford., Maurice 
Dagbert, A.C Aitken 
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multiplications, 21.0 seconds for a 4x4 multiplication, and 40.0 seconds for a 6x6 multiplication. 
Diamandi did much worse but the problem was removed from view during the test and timing 
was definitely stopped after the last digit was written, so it is not a fair comparison. Ruckle and 
Finkelstein did worse than Inaudi in later identical tests. Klein was demonstrably fast, but in tests 
in 1953 he was allowed to view the problem and write down digits as he obtained them, a definite 
advantage for someone like him who used cross-multiplication. Nonetheless his time of 48 
seconds to multiply two 9-digit numbers and 65-2/3 seconds to multiply two 10-digit numbers is 
very impressive. Klein also extracted integer roots of numbers, particularly 13th roots of 100-digit 
numbers, achieving a 1 min 28.8 sec time at one point. 
 
As for the size of problems, Dase reportedly multiplied two 8x8 digit multiplications in 54 sec, a 
20x20 digit multiplication in 6 min, a 40x40 digit multiplication in 40 min, and a 100x100 digit 
multiplication in 8 ¾ hours. Gauss later posed the question of who checked that last answer 
(adding that it was “a crazy waste of time”), and in fact lightning calculators often made errors, 
but of course those aren’t typically reported. Buxton, who could not read or write numbers, 
squared 725,958,238,096,074,907,868,531,656,993,638,851,106 in his head over the course of 2-
1/2 months, an astonishing feat of concentration that is scarcely marred by an error of one digit in 
the answer (this was an attempt to square 2139 but based on a flawed value for 2138). Alexander 
Craig Aitken extracted non-integer roots among other calculations, merging his natural speed in 
arithmetic with mathematical approximation and iteration formulas. And John Wallis before him 
extracted the square root of 3x1040 to 21 digits during one sleepless night and of a 55-digit 
number to 27 places during another night. Dase is also reported to have extracted square roots of 
perfect squares of 100 digits and 60 digits, but with no times given. 
 
The biographical details of these lightning calculators make interesting reading but are not the 
focus of this essay. There are a number of sites that provide the history of their lives or links to 
them, such as those listed here: 
 
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Mental_arithmetic.html 
http://www.mentalcalculation.com/calculators/list.htm 
http://www.nzedge.com/heroes/aitken.html 
http://www.answers.com/topic/truman-henry-safford 
http://www.math.buffalo.edu/mad/special/fuller_thomas_1710-1790.html 
http://www.mentalcalculation.com/misc/bbc1954.html 
 
and especially Oleg Stepanov’s site that contains many historical articles on various mental 
calculators: 
 
http://stepanov.lk.net/mnemo/mnemoare.html 
 
There are modern-day lightning calculators, of course. Some of those listed above who have a 
good amount of history in this field (such as Arthur Benjamin and Shakuntala Devi) still perform 
in public. There are also relative newcomers that I am aware of through the Yahoo Mental 
Calculation Group, such as Rüdiger Gamm, Gert Mittring, Alexis Lemaire, Robert Fountain, 
George Lane, John van Koningsveld, Alberto Coto, Willem Bouman, Andy Robertshaw, Matthias 
Kesselschläger, Yusnier Viera Romero and Jorge Arturo Mendoza Huertas, but this is a highly 
Eurocentric view (other than the last two) because of the makeup of the Yahoo group and the 
participants in the Mental Calculation World Cup held in Europe. Unfortunately, I’m not familiar 
with the many other newer lightning calculators from around the world—Chan Hee Yi of Korea 
has been pointed out, and India certainly has a number of such talented individuals. (I nearly 
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decided not to list any modern calculators to avoid slighting other people who certainly deserve to 
be listed—rest assured that all omissions are due to my limited knowledge in this area.) 
 
Below are some links to good videos on lightning calculators (in various languages): 
 

Wim Klein and Hans Eberstark at CERN (where Klein worked) from 1973: 
http://video.google.co.uk/videoplay?docid=-3917808389759629434 
 
Wim Klein at CERN in 1959 
http://www.youtube.com/watch?v=KqQrJvPP9eo 
 
A two-part documentary on Rüdiger Gamm: 
part 1: http://www.youtube.com/watch?v=NUsD2V6ijyQ&feature=related 
part 2: http://www.youtube.com/watch?v=oqxhxIuEGRw&feature=related 
 
Arthur Benjamin: 
http://www.youtube.com/watch?v=8Jb7m2vYZaQ 
http://www.youtube.com/watch?v=M4vqr3_ROIk 
 
A lecture by Gert Mittring on extracting cube roots: 
http://www.youtube.com/watch?v=NC3DGyJG5ME 
 
Jan van Koningsveld: 
http://www.youtube.com/watch?v=rgrTQa--EX8 
 
Willem Bouman on Dutch TV: 
http://www.youtube.com/watch?v=bMnZNIn5ha0 

 
The history of lightning calculators is interesting from a human standpoint, but it’s perhaps more 
intriguing because the methods they learned or developed are uniquely suited for fast mental 
calculation. These methods are different from the ones taught in school for pencil-and-paper 
solution, and therefore most people are quite surprised when they find out that other algorithms 
such as these exist. Techniques designed specifically for mental calculation are the subject of the 
second part of this essay.  
 
 
Part II: The Methods 
 
The types of calculations performed by lightning calculators were historically quite limited, 
notable mainly for the size of the numbers and the speed at which they were manipulated. But 
remember that the questioner had to verify every calculation by hand, making higher powers and 
roots (particularly inexact roots) much less feasible. The dawn of calculators and computers 
propelled some of these tasks into hitherto uncharted territories such as 13th or 23rd roots, deep 
roots of inexact powers, and so forth, much of it supported by more sophisticated mathematics. 
Here we will review the methods of calculation used in the past, many of them not commonly 
known, as well as other techniques that are relatively new. 
 
The traditional demonstrations of lightning calculators fall into the following categories: 
 

• Fast addition of numbers (not that common, actually) 
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• Fast multiplication of multi-digit numbers (very common, and with more success than 
Superman demonstrates) 

• Fast division (uncommon) 
• Factoring of large numbers or finding them to 

be prime (common) 
• Extraction of roots of perfect powers (very 

common) 
• Extraction of roots of numbers that are not 

perfect powers (rare) 
• Raising numbers to various powers 

(common) 
• Finding logarithms of numbers (uncommon) 
• Finding one or more sums of four squares 

that add to a given number (occasional) 
• Calendar calculations (exceedingly common) 
• Compound interest (isolated) 

 
In addition, there are more modern methods that can be used, particularly for approximating 
logarithms, exponentials and trigonometric functions, that have been constructed for those 
interested in these types of problems. 
 
The main techniques will be highlighted in sections below devoted to each of these tasks. It is 
important to realize that lightning calculators were highly individual in how they approached 
these tasks, and most calculators have such a vast knowledge of number facts that answers were 
often obtained immediately from memory or following only slight adjustment. As one example, 
Klein learned through experience the multiplication table through 100x100 and used it to great 
advantage doing cross-multiplication in 2-digit by 2-digit chunks. He also knew squares of 
integers up to 1000, cubes up to 100, and roughly all primes below 10,000. He also knew 
logarithms base 10 to 5 digits for integers up to 150. 
 
Sometimes calculators used a mnemonic scheme, often of their own design, to aid in 
remembering these number facts. Mnemonics is the association of digits with images or letters in 
a sentence. Arthur Benjamin presents in his book, Secrets of Mental Math, the mnemonic scheme 
he uses to remember intermediate values during long mental calculations, based on a phonic 
method a few hundred years old. I ran across a chapter from a 1910 book that uses this same 
scheme to encode the cubes of all 2-digit numbers, and on a lark I modernized its quaint phrases 
and extended its scope to provide squares as well, and I wrote it all up in a paper found at  
 
http://www.myreckonings.com/Dead_Reckoning/Online/Materials/Mnemonics_for_Squares_and
_Cubes.pdf  
 
But the more involved calculations also involve algebraic methods deduced by the performer 
through familiarity with the processes or, increasingly today, by consciously applying 
mathematical relations, number theory and numerical approximations. Some of the methods 
described below receive greater attention in Smith’s book, while others are described in greater 
detail in other references. An excellent source for the world records in various categories of 
memorization and mental calculation can be found at 
 
http://www.recordholders.org/en/list/memory.html 
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I might as well mention here that there is a movement to assign discovery of quite a few of these 
algebraic techniques to an ancient system of Vedic Mathematics rediscovered between 1911 and 
1918 from the Sanskrit texts known as the Vedas by Sri Bharati Krsna Tirthaji (1884-1960) and 
expressed as sixteen Sutras. See 
http://www.vedicmaths.org/Introduction/History/History%20of%20VM.asp for an overview of 
these beliefs. For a detailed presentation of these Sutras as well as outright criticism of the 
supposed origin of them and their overall effectiveness as an educational tool, see  
http://arxiv.org/ftp/math/papers/0611/0611347.pdf . In my opinion, and I know this is not a 
popular one in some circles, systems such as this (and including resurgent schools for teaching 
the abacus and soroban in China, Japan and elsewhere) divert students’ time in much the same 
way as the “New Math” introduced in U.S. schools in the 1950’s and 1960’s. 
 
 
Fast Addition 
 
It might seem that rapid addition would be a common demonstration for lightning calculators, but 
Smith notes that lightning calculators, driven by their interest in numbers, typically found 
addition and subtraction too dry for study. Inaudi and Bidder would add several multi-digit 
numbers, and there were a few more who specialized in just this task, but their methods were 
necessarily straightforward. The common theme seems to be grouping numbers into groups of 
digits to add separately, minding any carries or borrows as needed. I remember reading 
somewhere of a tip for adding a column of 3-digit numbers such as a grocery bill that proved a 
surprisingly helpful technique. In such a case it’s easier to add the tens and ones digits as groups 
and then add the hundreds digits at the end. So say you are presented with a column of numbers 
such as 
 
 245 
 814 
 152 
   81 
 696 
 317 
 ---- 
 
Adding them as single digits can be slow and adding them as 3-digit numbers can be confusing, 
so we might add 45+14=59, add 52=111, add 81=192, add 96=288 (where 96=100-4), add 
17=305. Then add 2+8+1+6+3=20 and with the carry of 3 we have 2305 as the sum. Now this 
might be a lot slower for you than just adding the columns in individual digits, but a practiced 
calculator can add 2-digit numbers in a flash (or 3-digit numbers and so on), so with some 
development this can be a faster alternative. 
 
 
Fast Multiplication 
 
I haven’t heard of any lightning calculator who didn’t or doesn’t perform multiplications of multi-
digit numbers. Many of them had such an intimate knowledge of factors and multiples built up 
after years of practice that often such a problem could be re-arranged into a known one plus some 
correction such as an additional factor. Some common products produce numbers that are easy to 
multiply by another number, so knowing such convenient products can be a real help. For 
example, 
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67 x 3  =  201  23 x 13  =  299   19 x 21  =  399 
17 x 47  =  799  89 x 9  =  801   53 x 17  =  901 
37 x 27  =  999  7 x 11 x 13  =  1001  23 x 29 x 3  =  2001 
31 x 43 x 3  =  3999 and so forth… 

 
The two most common techniques used by lightning calculators for mental multiplication are 
adding partial products and performing cross-multiplication on the digits. 
 
Partial products are the combinations of the individual digit multiplications, and they are added 
up from left to right to find the product: 
 
 46 x 58 =  40x50 +40x8 + 6x50 + 6x8 
  =  2000 + 320 + 300 + 48 
  =  2668 
 
The terms are added as they are calculated, so when 40x8 is calculated, it is added to 2000 to get 
2320, then 6x50 is added to get 2620, and finally 6x8 is added to yield 2668. There is only one 
running total to remember. 
 
Cross-multiplication does not involve these large sums. The digits of the product are found one at 
a time, but the procedure has the disadvantage that the digits are produced from right to left, so 
they must be remembered and reversed to recite the answer verbally. Typically the digits are 
written as they are obtained from right to left. In this method the combinations of single-digit 
products that contribute to each digit of the result are added, including carries. For example, 
 
 46 x 58: 6x8  =  48, or 8 with a carry of 4 
   4x8 + 6x5 + 4  =  66 , or 6 with a carry of 6 
   4x5 + 6  =  26 
   Answer:  2668 
 
Both of these methods have the advantages that they can produce results very quickly with 
practice, they scale up very well with larger multipliers, and they don’t require any 
multiplications beyond one-digit by one-digit (Klein used 2-digit by 2-digit cross-multiplication). 
They are simple and very practical methods. 
 
There are various ways to simplify multiplication based on the properties and relationships of the 
numbers involved. We might notice in a problem that one of the multipliers is quite near a very 
round number, say, a multiple of 10 or 25. We can multiply by that round number instead and 
adjust for the difference at the end.  For example, 
 
 29 x 34 = 30x34 − 34  
 
To find 30x34 here, we would multiply from left to right: 30x30 + 30x4.  Now if a multiplier 
exceeds a multiple of 10 by the amount of the multiple, we can use the multiple of 10 and add 
1/10 of that result. If a multiplier lies below the multiple of 10, we subtract 1/10 of the result.  
Multiples of 11 and 9 have these properties. 
 
 33 x 62:  Find 30x62  =  1860, then 1860 + 186  =  2046 
 36 x 62:  Find 40x62  =  2480, then 2480 − 248  =  2232  
 



9 

We would not subtract 248 directly in the last example, but rather subtract 250 and add 2, a 
slightly different view of subtraction that makes a large practical difference. 
 
We can also look at a number as a collection of convenient groupings. For example, we can 
multiply 124726132 by 5 by first halving each even grouping in the first number and then 
appending zero: 
 

12 4 72 6 132  x  5  =  6 2 36 3 066 0       or       8 32 6 31  x  5  =  4 16 3 15 5 
 

Multiplying a number by 15 can be done by multiplying by 10 and adding half the result.  We can 
think of adding a zero, and then adding half of each even grouping to itself, working left to right 
and keeping the same number of digits in the grouping as it started with. If a grouping ends up 
with an additional digit, the upper digit is added to the grouping to the left. The presentation 
below makes the calculation look more difficult than it actually is—the result is generated 
smoothly from left to right, with perhaps a correction for a carry from the next grouping, as with 
the carry of 1 from the (72+36) grouping below to the group on its left: 
 

12 4 72 6 132  x  15  =  (12+6) (4+2) (72+36) (6+3) (132 + 66) 0 
                                  =      18       7         08         9          198      0 

 
Multiplication by 25, or 100/4, can be thought of as appending two zeros and dividing by 4.  
Multiplying by 50 can be done as 100/2, 75 as 300/4, 125 as 1000/8, and so forth. 
 
These are reasonable and readily understood concepts that involve looking at the whole number 
rather than individual digits. This is a mental shift that is subtle but critical in developing a 
number sense. Methods like these are also more general than they seem at first, because if they 
almost apply, we can use them on nearby numbers and then apply a correction at the end. 
 
These methods all involve thinking about the properties of numbers, so they appeal to me as 
methods for somewhat specific circumstances. However, there is a type of method that is useful 
in a very wide variety of multiplications. When the multipliers are a distance c and d from a 
round number, their product can be represented by the product of the round number and the sum 
of the round number and the two differences, with the product of the two differences added at the 
end as a small correction. There does not seem to be a consistent name for this method in the 
literature; I call it the Anchor Method: 
 

(a+c)(a+d)  =  a(a+c+d) + cd            Anchor Method 
 
This is much easier to use than it might appear, as we will see, and a knack for it is easily 
developed with a small amount of practice. The concept can be taught to children. I visualize 
“anchoring” one multiplier at the round number, and then literally stringing out the differences 
from the original numbers from this anchor to find the other multiplier. It will turn out that the 
original multipliers move outward, their product will be less than the original, so the correction at 
the end needs to be added, and if they move inward, the correction is subtracted. This corresponds 
to the intuitive (and correct) concept that a square has the greatest area for a given sum of side 
lengths; the rectangle produced by shifting length on a square from one side to another side will 
have a smaller product of the two sides because (x+n)(x−n) = x2 − n2 is always less than x2.  
 
Below are three representative problems and a visualization of each solution. (The numbers are 
shown on vertical number lines because I “see” number lines as vertical rather than horizontal.  I 
remember having difficulty learning the number line concept in grade school, and I believe it was 
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due to think a vertical layout would be much more intuitive to children (and me) who think 
numbers go up as they get higher.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An anchor of 100 is very common, say, 842 = 100x68 + 162. With 100 as the anchor, we can find 
68 as the last digits of 84 doubled rather than by finding the difference between 100 and 84 and 
subtracting this from 84. 
 
If the numbers to multiply are far apart, though, we can end up with a large correction term cd. 
There are a few strategies to bring the multipliers nearer to each other: 
 

1. Subtract one number from a very round number (or add it to a very round number) to 
bring it closer to the other number: 

 
23 x 67  =  23(100−33)  =  2300 − 23x33  =  2300 − (20x36 + 3x13) 

 
2. Divide or multiply one number by a low integer and add a correction: 

 
23 x 67  =  23x33x2 + 23  =  2(20x36 + 3x13) + 23 

12 x 13  =  10 x 15  +  2 x 3  =  156

18 x 16  =  20 x 14  +  2 x 4  =  288

18 x 24  = 20 x 22  −  2 x 4  =  432

15 

10 

12

3

13
2 + 3

10Anchor 

20 

14 

16
-418

-2

-2 - 4

20Anchor 20 

14 

16
-418

-2

-2 - 4

20Anchor 

22 

20 

18

4

24

-2

-2 + 4
20Anchor 
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3. Break one number into two convenient parts: 

 
23 x 67  =  23(50+17)  =  2300/2  + 23x17  =  1150 + 202 − 32 

 
In the end we can use our creativity and experience to manipulate the calculation as we wish. 
 
One of the most powerful tools in mental calculation is converting the multiplication of two 
different numbers into the square of the average minus the square of the distance to the average. 
This is shown by the Midpoint Method, an algebraic identity: 
 

(a+c)(a−c)  =  a2 − c2            Midpoint  Method 
 

where a is the average of the two numbers, (a+c) is one of the numbers, and (a−c) is the other 
number. This is algebraically equivalent to the Anchor Method formula if d = -c, or in other 
words when the anchor is midway between the two multipliers. The choice of the anchor as the 
midpoint or some other number depends on the problem and on personal preferences, but there is 
no doubt that using the midpoint is a very common technique. For example, 
 
 28x32 = 302 − 22 
 52x78 = 652 − 132 
 
or, considering the first problem in this section, 
 
 46 x 58 =  522 − 62 
 
Less convenient multipliers can be manipulated in a number of ways to use this technique. We 
might have the case where there is no midpoint of the two multipliers—here we can adjust one of 
the multipliers by 1, do the calculation, and then provide a correction to account for the original 
adjustment, as for 28x33  =  28x32 + 28  =  302 − 22 + 28, but in this particular case it may be 
easier to use the Anchor Method from the last section: 28x33  =  30x31 − 2x3. 
 
To calculate squares we might use the Midpoint Method in reverse.  We can split a square into 
the product of two numbers equidistant from the original number, and add the square of that 
distance, again one scenario of the Anchor Method. For example, let’s continue with one of our 
examples from earlier: 
 

    52x78 = 652 − 132 
 
Now we find 652 by spreading 65 in both directions by an equal amount and adding the square of 
that amount. Here a good spread is by 5, yielding 652 = 60x70 + 25 = 4225.  Similarly, 132 = 
10x16 + 9 = 169. So we can turn a general multiplication into a square plus a small correction, 
and we can turn that square into an even simpler multiplication and one more small correction if 
needed.  Again, I find it helpful to remember that the average squared will always be larger than 
the spread numbers multiplied, so when collapsing two multipliers to a square you subtract the 
correction, and when spreading a square to the product of two numbers you add the correction. 
These transformations become automatic and very fast after a bit of practice. 
 
Many of you may recognize in the example of 652 the trick for squaring numbers ending in 5: 
multiply the number left of the units digit by that number plus one, and then append 25, as in 6x7 
| 25 = 4225. Now we can see why that works. 
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The Midpoint Method described earlier applies to larger numbers, e.g., 244x376 = 3102 − 662. 
But 3102 is really just a square of a two-digit number followed by two zeros—what if we had 
ended up with a three-digit square here? Again we split the square into two numbers equidistant 
from the original number, adding the square of that distance. To illustrate, 244x382 = 3132 − 692 
= [300x326 + 132] − 692, and we end up with a simple calculation if we know the two-digit 
squares. 
 
And there are indeed a variety of other techniques for finding squares. Most of these involve 
expressing the number to be squared as the sum of two other numbers that are more easily 
squared, using the Binomial Expansion for Squares: 
 

(a+b)2 = a2 + 2ab + b2  Binomial Expansion for Squares 
 
To illustrate, 
 

342 = (30+4)2 = 302 + 2x30x4 + 42 = 1156 
692 = (70−1)2 = 702 − 2x70x1 + 12 = 4761 
3132 = (300+13)2 = 3002 + 2x300x13 + 132 = 90000 + 7800 + 169 = 97969 

 
In another application of the binomial expansion, one of the most intriguing and useful techniques 
easily finds the square of a number near 50. Here we add the difference from 50 to 25, multiply 
by 100, and add the difference squared. If the number is within 10 of 50, we can add the 
difference to 25 and simply append the distance squared rather than adding it.  Let’s use the 
vertical bar “|” to separate two-digit groups. Note that if we end up with a 3-digit result in a 
grouping, its most significant digit would be added to the group to its left. In this notation, 
 
     (50+a)2  =  (25 + a)  |  a2  Ex:  522  =  (25+2) | 22  =  2704 

       442  =  (25−6) | 62  =  1936 
       382  =  (25−12) | 122  =  13 | 144 = 1444 

 
This is a simpler way of thinking of the binomial expansion (50+a)2 = 2500 + 100a + a2.   
 
We can also use the fact that multiples of 25 are fairly round numbers. We can square numbers 
near 25 using the expansion (25+a)2 = 625 + 50a + a2, as 272 = 625 + 100 + 4 = 729. The relation 
(75+a)2 = 5625 + 150a + a2 can be used to find, say, 782 = 5625 + 450 + 9 = 6084.  We can 
reformat these into our notation, noting that a .5 in a group is converted to a 50 in the group to the 
right of it: 
 
     (25+a)2  =  (6 + a/2)  |  (25 + a2)  Ex:  272  =  (6+1) | (25 + 22)  =  729 
     (75+a)2  =  (56 + a + a/2)  |  (25 + a2)  Ex:  782  =  (56+3+1.5) | (25 + 32)  = 

                    60.5 | 34  =  6084 
 
Alternatively, we can re-arrange the binomial expansion of two-digit squares ending in 9, 8, or 7 
in another interesting way: 
 

(10a+9)2  =  100a(a+1) + 80(a+1) + 1 
(10a+8)2  =  100a(a+1) + 60(a+1) + 4 
(10a+7)2  =  100a(a+1) + 40(a+1) + 9 
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where the digits in bold comprise the square of the units digit. So 792 = 5600 + 640 + 1 = 6241, 
872 = 7200 + 360 + 9 = 7569, and so on. 
 
If a neighbor of the number has a square that is known or easily calculated, we can use this 
convenient square and adjust for the difference. Since (a+1)2 = a2 + a + (a+1), we can find 312 = 
302 + 30 + 31 = 961.  Similarly, 292 = 302 − 30 − 29 = 841. For other neighboring numbers we 
can find the square of the convenient number, then add or subtract the original number, the final 
number, and twice each number in between, so 322 = 302 + 30 + 2x31 + 32 = 1024, a square that 
we recognize from powers of 2. Ultimately we will find that the field is quite crowded for 
squaring numbers less than 100, and in a surprising development we eventually start looking to 
three-digit numbers for more interesting challenges. 
 
Three-digit numbers can be treated like two-digit numbers in all these methods if we treat the 
leftmost two digits as a single digit, as in using the technique for squaring numbers ending in 5 to 
find 2352 = 23x24 | 25 = 55225. We can also alter some of the methods slightly for three-digit 
calculations. The square of a number near 500 can be found by adding the difference from 500 to 
250 and appending the difference squared as a three-digit group delineated by a comma: 
 
     (500+a)2  =  (250 + a)  ,  a2 
so, 

    5132  =  263,169 
    4922  =  242,064 

 
Multiplying larger numbers extends these rules further with a corresponding increase in 
difficultly. A more recent method of multiplying two 4-digit numbers is discussed in the Newer 
Methods section of this essay. I might add that an excellent, free training program for practicing 
multiplications up to 4x4 can be found at http://www.buildquiz.com/speed_math.swf . 
 
 
Fast Division 
 
Division was not a common task except in the limited context of factoring a number, which is not 
really division in the truest sense. When this was done, as in the case of decimalizing a fraction, it 
was often done by reversing known multiplications or by taking advantage of properties of 
division by small integers (which might be factors of the actual divisor). 
 
There are some properties of reciprocals 1/t that help in finding their decimal expansions, and of 
course a calculation of s/t might first calculate 1/t and then multiply the answer by s. For a 
denominator t with prime factors of 2 and 5 only, the number of decimal places in its decimal 
expansion will equal the highest power of 2 or 5, so any s/16 will terminate after the fourth 
decimal place since 16 = 24 x 5. If t is a prime number, the decimal expansion of 1/t will consist 
of some zeros followed by repeated groups of digits. The length of this group will be (t-1) or a 
factor of (t-1), the first type occurring for t = 7, 17, 19, 23, 29, 47, 59, 61, 97, … So 1/7 will have 
a 6-digit repeating group and in fact 1/7 = 0.142857142857142857… When t is one of these 
special primes, the corresponding digits in the two halves of the group will add to 9, so here if we 
find 1/7 to three places (0.142) we immediately know the next three digits (857) and we now have 
the whole repeating group. A numerator here other than 7 that is less than 7 simply rotates the 
digits of the repeating group, maintaining this relationship. A numerator greater than 7 will 
consist of some digits to the left of the decimal point, followed by the repeating groups based on 
the remainder. Also, the repeating group of 1/t for a prime t with a units digit of 1 will have a last 
digit of 9 and vice-versa, otherwise the last digit of the repeating group will be the same as the 
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last digit of t. So for 1/7 we know immediately that the last digit of the repeating group will be 7, 
so we take the reciprocal to 2 places (0.14), then we know the next digit is (9-7) or 2, then we 
complete the entire group as 142857. 
 
There are many such relationships that make such divisions faster and simpler. People will 
generally request division by prime numbers anyway, so it’s possible to memorize some of these 
repeating groups (or half of each group). Some questioners are aware that 1/97 has 96 digits in the 
repeating group and ask for that reciprocal. Aitken remarked that this was sometimes asked and 
then rattled off the answer, and we will see a critique in the Media part of this essay of such a 
question posed in a modern documentary. 
 
Aitken used these properties of reciprocals to decimalize fractions, but he also would use straight 
division but with a simpler divisor, making corrections as needed in each step. For example, when 
a divisor ended in 9, such as 1/59, he would divide instead by 60 as described in his paper at 
http://stepanov.lk.net/mnemo/aitkene.html : 
 
    6)1.016949152  =  .0169491525… 
 
where the adjustment for the simpler divisor amounts to adding the previously obtained digit to 
the next digit in the dividend (here always 0).  
 
If there is situation that involves dividing by, say, a four-digit value, we can try to reduce the 
denominator to an integer of one or two digits at most, as short division by numbers of this size 
are not too difficult. First, we convert the denominator to an integer by shifting its decimal point 
and shifting the decimal point in the numerator by the same amount. For example, 4.657/.07 = 
465.7/7 = 66.53 to four digits. Then we look to simplify the fraction by dividing the numerator 
and denominator by low common factors. For example, .2420/7.2 = 2.420/72 = .605/18 = .0336 
to four digits. We could have twice divided through by 2, but the last two digits of both numbers 
are divisible by 4, so the entire numbers are divisible by 4. The division by 18 can be done 
directly (I would count up by 18’s here, so for 60 we have 18Æ36Æ54 gives 3 remainder 6, then 
for 65 we know 54 again gives 3 remainder 11, then for 110 we double 54 to give 6 remainder 2, 
etc.), or we can divide .605 by 2, then by 9. Division by 2 is easiest if the number is split into 
even number groups, so .605 is split into .(60)(50), so half of each even group gives .3025, and 
dividing this by 9 yields .0336 as before. In other words, we can divide the denominator by a 
convenient factor even when the numerator is not evenly divisible by it, e.g., 35/36 = 5.833/6 = 
.9722 . 
 
We can also adjust the denominator a little bit to get it to a round number as long as we adjust 
the numerator by the same percentage. If we are solving 247/119, we see that the numerator is 
about twice the denominator, so if we adjust 119 up to 120, we need to adjust 247 by about 2, and 
we arrive at 249/120 = 24.9/12 = 2.0750 compared to the actual value of 2.0756… With 
experience, we might notice that 247 is twice 119 plus about 10%, so we could add 2.1 to 247 to 
get a more accurate 24.91/12 = 2.0758. If we have 91.5/353, we can adjust the denominator down 
to 350 and double the fraction to have a single-digit division, so 91.5/353 = 90.75/350 = 
181.5/700 = 1.815/7 = .2593 , where we reasoned that decreasing 353 by 3 was roughly equal to 
decreasing 91.5 by ¾ . Our answer will be a bit high, since 91.5 is a bit more than 1/4 of 353, so 
we might subtract a tiny bit from our answer (which is in fact in excess by .0001). This shifting 
technique may not seem like much, but as a graduate teaching assistant I impressed more than 
one physics class by using it to mentally calculate answers to problems. 
 
Finally, we can generalize an approximation that is valid for small b, that is 
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1 / (1+b)   ≈  1−b 

 
to get 
 

a / (c+b)  ≈  (a/c) (1 – b/c) 
 
a / (c-b)  ≈  (a/c) (1 + b/c) 
 

The error here is about .01 of a/c when b/c is 1/10, and about .0001 of a/c when b/c is 1/100 , low 
for both approximations. This is a nice alternative to shifting the denominator when the 
numerator is not a simple multiple or fraction of the denominator. For example, 27/61 ≈ (27/60)(1 
– 1/60) . Here we can find 27/60 = 2.7/6 = .4500 , then subtract .4500/60 = .0450/6 = .0075 to get 
.4425 compared to the actual value of .4426 . Since 1/60 is 1/6 of 1/10 and the error follows a 
square law, we are low by about (.45/36)(.01), or .0001 , but this is for better calculators than me. 
 
In short, long division should not be as intimidating as it might seem, particularly since we have 
flexibility in our accuracy. If the problem is difficult to rearrange, we settle for less accuracy; if it 
can be easily manipulated, we take what we are offered. 
 
 
Factoring and Primality Testing 
 
Factoring, I imagine, would have fired the imagination of a lightning calculator. Here every 
carefully preserved number fact, every trick in the book could be thrown at the problem in a wild 
attempt to unlock the puzzle in a highly-charged atmosphere of anticipation. If an answer were to 
emerge immediately, either through luck or a creative leap, the solution is recorded as an instance 
of true genius. The fact that methods of factoring are not commonly known, and that no closed 
form method of factoring exists in general, lends this feat an aura of mystery that high-order roots 
once had prior to calculators. In fact, determining whether a number has no factors (other than 1 
and itself, of course)—or in other words declaring a number to be prime—is more difficult than 
finding factors of a compound number. This one category may be the true measure of the depth 
and brilliance of a mental calculator. Many were adept at it, including Klein and Aitken. At 8 
years of age, Zerah Colburn could factor 6-digit numbers or declare them prime. 
 
Trial and error was the most common method, but only after reducing the possible factors of the 
number to a minimum. This can be done by looking at the last few digits of the given number and 
having memorized products that end in those numbers. As trivial examples, an even last digit 
such as 0,2,4,6, or 8 is obviously divisible by 2, and a last digit of 0 or 5 is divisible by 5. If the 
last two digits of a number are divisible by 4, the number is divisible by 4, and if the last three 
digits are divisible by 8, the number is divisible by 8. There are a number of divisibility tests for 
small primes that are commonly known (see http://en.wikipedia.org/wiki/Divisibility_rule). 
Beyond that, lightning calculators often knew all products of two numbers that would end in any 
two digits, and it’s a good bet that they knew a lot that ended in various 3-digit numbers. These 
would significantly limit the number of factors to verify by multiplication, which only have to be 
tested up to the square root of the given number, and unless the number turns out to be prime 
there is no need to test every one before a true factor is found. 
 
The mathematician Fermat produced the first methodical method of finding factors of integers. 
Since a2 – b2 = (a+b)(a-b), then if two squares can be found whose difference equals the given 
number, two factors will have been found. As mentioned in the Fast Multiplication section, 



16 

squaring numbers is generally easier than multiplying two numbers, and calculators could also 
memorize tables of last digits of differences of squares to limit these possibilities as well. To 
simply test whether a number of the form (4n+1) is prime, possible sums of two squares could be 
checked, as a prime of this form can only be expressed as a single such sum (Smith reports that 
Aitken and Klein used this fact). 
 
Factoring is a fun diversion. I know at least two people who practice factoring car license plates 
or the last few digits of the odometer while driving. Not recommended. 
 
 
Integer Roots 
 
Producing high-order roots of perfect powers is extremely common, generally possessing all the 
drama of factoring or primality testing (and assuredly more) without the nuance or difficulty of 
the latter. It makes great press, though (see the later discussion on the media). I say “generally” 
because at the highest levels of this task, a distinction lost on the public, a calculator does have to 
stretch his/her capabilities in remarkable ways to find the answer. Klein was an expert on this, 
along with Dagbert and Marathe, but it’s safe to say that integer roots were asked of all lightning 
calculators, then and now. 
 
As a good rule of thumb, the difficulty of extracting a root does not depend on the order of the 
root (unless it is an even root, which is rarely asked) but rather on the number of digits in the 
answer. This is critical in any evaluation of such a feat—remember this the next time you hear 
that someone extracted the cube root of a number near a billion, or the 13th root of a 39-digit 
number or the 23rd root of a 69-digit number, all of which have at most 3-digit answers. 
 
It turns out that the last digit of a root of an order (4k+1), such as a 5th root, a 9th root, etc., is the 
same as the last digit of the power, so for example the 13th root of 
79,469,020,066,571,739,979,222,359,560,551,645,783 has a last digit of 3. The last digit of a root 
of an order (4k+3), such as a cube root, a 7th root, etc., is different but unique compared to the last 
digit of the power, so with some memorization the digit-pairing is also known for these roots. 
Between these two rules we have one of the three digits of an exact, odd root.  
 
Now the highest digit can be found by memorizing the ranges of powers for the various starting 
digits 0 through 9. In our example above, of the 13th root of 
79,469,020,066,571,739,979,222,359,560,551,645,783 we might have memorized the fact that 
the 13th power of a 3-digit number starting with 8 ranges from 55x1036 to 250x1036, and here we 
have 79x1036, so we now immediately know the number is of the form 8n3, where n is the final 
digit to determine. 
 
We can use remainders from divisibility tests to find the missing middle digit. For example, the 
remainder after a cube is divided by 11 (the 11-remainder) is uniquely paired with the remainder 
after its cube root is divided by 11, as 
 

(0,0), (1,1), (2,8), (3,5), (4,9), (5,4), (6,7), (7,2), (8,6), (9,3), (10,10) 
 
We can find the 11-remainder by subtracting the sum of the even-place digits of a number from 
the sum of the odd-place digits, then adding or subtracting multiples of 11 to find a number 
between 0 and 10. For example, if we have a cube 300763, the 11-remainder is (3+7 +0) – 
(6+0+3) = 1. Therefore the 11-remainder of the cube root is, from the pairing, also 1. We know 
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from earlier than a cube and its root has a unique pairing of last digits, which we can also 
memorize as 
 

(0,0), (1,1), (2,8), (3,7), (4,4), (5,5), (6,6), (7,3), (8,2), (9,9) 
 
So the last digit of the cube root must be 7 since 300763 ends in 3, and since the cube is less than 
a billion it is a 2-digit number n7. The 11-remainder (7-n) must equal 1, so n = 6 and we find the 
cube root of 300763 to be 67. 
 
The 9-remainder can be tried for fifth roots, as it produces (power, root) pairs of 
 

 (0,0), (0,3), (0,6), (1,1), (2,5), (4,7), (5,2), (7,4), (8,8) 
 
The only ambiguity is when the 9-remainder of the fifth power is 0, and in this case the 11-
remainder can then be used to distinguish them. 
 
In our running example of the 13th root of 79,469,020,066,571,739,979,222,359,560,551,645,783 
the 13-remainder will be the same as the 13-remainder of the root. We could do short division by 
13 working from left to right one digit at a time, or since 7x11x13=1001, we can divide out 
multiples of 1001 from the original number by subtracting each thousands group from the 
thousands group to its right: 
 

     79,469,020,066,571,739,979,222,359,560,551,645,783 
          390,020,066,571,739,979,222,359,560,551,645,783 

               (-370),066,571,739,979,222,359,560,551,645,783 
                          436,571,739,979,222,359,560,551,645,783 
                                 135,739,979,222,359,560,551,645,783 
                                         604,979,222,359,560,551,645,783 
                                               375,222,359,560,551,645,783 
                                                  (-153),359,560,551,645,783 
                                                             512,560,551,645,783 
                                                                      48,551,645,783 
                                                                           503,645,783 
                                                                                  142,783 
                                                                                         641 
 
Dividing 641 by 13 we arrive at a 13-remainder of 4. So 8n3 must leave 4 as a 13-remainder, and 
it doesn’t take long to find the middle digit to be 2 and we have found the 13th root of a very large 
number indeed. 
 
With some additional memorization of two-digit endings of powers it’s possible to get the last 
two digits for a given root (and calculators often specialize in certain orders of roots), and this is 
also possible to do for the first two digits. This provides the ability to find roots of greater 
numbers of digits. Klein also used logarithms he memorized to calculate the first five digits of the 
answer, which also increased his range—he is an example of someone who has raised the bar on 
these calculations to extremely impressive heights. Alexis Lemaire, a present-day lightning 
calculator is another—his specialty is finding the 13th root of 200-digit numbers, which contains 
up to 16 digits. 
 
I might add that I use the variable precision arithmetic (vpa) command in the MATLAB software 
package to generate arithmetic results to many digits. Here the command “vpa 823**13 200” will 
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provide all digits of 82313 up to a maximum of 200 digits. Octave (found at 
http://www.gnu.org/software/octave/ ) is a free open-source alternative to MATLAB that is 
designed to accept MATLAB commands. 
 
 
Non-Integer Roots 
 
Irrational roots, that is, decimal roots of number that are not perfect powers, is historically rare, 
although it is more popular today because it is easy to use calculators and computers to generate 
problems. Aitken was able to approximate square and cube roots using numerical approximation 
techniques he was aware of as a mathematician. 
 
Aitken could find the square roots of non-squares to five significant digits in about 5 sec. From an 
initial approximation n (a decimal or fraction) of the square root of a number N, he used the 
Newton-Raphson method for iterating a function to find a correction as (N – n2) / (2n). So for 
N=85, we can estimate the square root as 9 and find a better answer as 9 + (85 – 92)/18 = 9.22 
compared to the actual value of 9.219544… A closer initial value yields a much closer answer, so 
if we can do two-digit multiplications and divisions we can take an initial estimate of 9.2 to find a 
better answer of 9.2 + (85 – 9.22)/18.4 = 9.219565…   
 
Cube roots can be approximated by a similar mechanism—for a description (and for more 
examples of square roots) I heartily recommend reading Smith’s book or Aitken’s 1954 talk on  
mental calculation found at http://stepanov.lk.net/mnemo/aitkene.html . 
 
If logarithms and anti-logarithms can be mentally calculated, this provides a different way of 
approximating roots, even higher-order roots. The 12th root of N, for example, can be calculated 
by finding log N, dividing by 12, and then finding the antilogarithm, all at whatever accuracy the 
calculator can produce. Klein used his memorized logarithms and simple interpolation to do this. 
 
 
Powers of Integers (Involution) 
 
As we saw earlier, squares and cubes of numbers offer advantages to the calculator. In general it’s 
easier to use the binomial expansion of (a+b)n for a round number “a” and a small correction “b” 
than to multiply the number (a+b) by itself n times. 
 

(a + b)2  =  a2 + 2ab + b2 
(a + b)3  =  a3 + 3a2b + 3ab2 + b3 
 etc. 

 
When multiplying, Mondeux would factor problems if possible, and if this reduced the problem 
to powers such as squares and cubes, he would employ the binomial expansion. In 1952 Klein 
raised 87 to the 16th power, which Smith assumes was most likely by successive squaring. 
Marathe is an expert on raising single digits to powers up to 20 (but how many different results is 
this, really?). Euler is reported to have mentally calculated the first six powers of all numbers less 
than 20 in one restless night. 
 
 
Logarithms 
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Logarithms occur naturally in formulas, and as we have seen earlier they can be used to find roots 
of any order, even fractional roots, if there is a means of finding the antilogarithm as well. 
 
We saw earlier than Klein had memorized the logarithms of the first 150 integers to 5 digits. 
Bidder had memorized those for the first 100 integers to 8 digits. By factoring a number and 
scaling the factors by multiples of 10 when needed, corresponding logarithms can be added to 
find the logarithm of the answer. For example, log 483 = log (3 x 7 x 23) = log 3 + log 7 + log 23 
= 0.47712 + 0.84510 + 1.36173 = 2.68395. But what about log 487? Well, 487 = 483(1+ 4/483) ≈ 
483(1 + 1/120) so log 487 ≈ log 483 + log(1 + 1/120). The well-known power series for the 
natural logarithm (denoted by ln) of a value 1+x for x ≤ 1 and x ≠ -1 is: 
 

ln (1+n) = n – n2/2 + n3/3 –  … 
 
We can truncate this series very quickly if n is small. To find the common logarithm (to base 10) 
rather than the natural logarithm (to base e), we have to multiply ln(1+n) by log e = .4343. So 
 

log(1 + 1/120) = .4343 ln (1 + 1/120) ≈ .43/120 = 0.00358 
 
Adding this value to our earlier result log 483 = 2.68395 we arrive at log 487 ≈ 2.68753 which is 
actually correct to the last digit shown. 
 
There are other methods as well. Bidder used the following relation to arrive at the last correction 
above: 
 

log (1 + n) ≈ 10m n log (1+10-m) 
 
where m is chosen so that 10m n lies between 1 and 10. Bidder memorized the values of log 
(1+10-m): 
 

log 1.01 = 0.00432… 
log 1.001 = .000434… 
log 1.0001 = .0000434… 
etc. 

 
where the digits approach log e = .4343… as m increases. The correction above was log (1 + 
1/120) = log (1 + .00833), so m=3 will give 103 x .00833 = 8.33 and multiplying this by log 1.001 
= .000434 we arrive at .0036 if we simplify the multiplication to 2 places. This is quite near the 
correction we calculated by our last method. 
 
Note that n can be positive or negative in these relations, so the relations are useful when it is 
easier to find the logarithm either above or below the desired number. 
 
 
Sum of Four Squares 
 
Every positive integer can be written as at least one sum of four squares, so this task was 
occasionally asked of lightning calculators, particularly those who specialized in it such as 
Ruckle, Finkelstein and Klein. As a typical case, Ruckle expressed 15663 as a sum of four 
squares in 8 sec, followed immediately by a second sum. The same was done for 18111 in 26.5 
sec and 63.5 sec, and for 53116 in 51 sec immediately followed by a second sum. 
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Like factoring, a solution for reducing an integer to the sum of four squares cannot be expressed 
in closed form, and success relies in part on the experience and cleverness of the calculator. I 
have written a paper summarizing methods for such reductions (a subject not covered by my 
book, by the way) that can be found at: 
 
http://www.myreckonings.com/Dead_Reckoning/Online/Materials/Sum%20of%20Four%20Squa
res.pdf 
 
In a different vein related to squares, given an integer c Mondeux could find two squares a and b 
that have a difference of c. He apparently knew that if d = a – b, then b = (c – d2) / (2d). Then it 
becomes a matter of finding d such that b is a positive integer, whence a = b + d. If c is odd then 
he could set d = 1 and then b = (c-a)/2 and a = b + 1. 
 
 
Calendar Calculations 
 
Calendar calculations are probably the most commonly performed feat of calculators, particularly 
aspiring calculators, but this happens to be my least favorite task. It usually involves finding the 
day of the week for any day in history, which has to take into account leap years and the 
Gregorian calendar change (which was adopted in various years by various countries, actually). 
Since this is an area I haven’t studied in detail, I will simply provide some good websites that 
describe calendar algorithms: 
 
http://rudy.ca/doomsday.html 
http://calendars.wikia.com/wiki/Calculating_the_day_of_the_week 
http://www.terra.es/personal2/grimmer/ 
http://www.cs.usyd.edu.au/~kev/pp/TUTORIALS/1b/carroll.html 
http://litemind.com/how-to-become-a-human-calendar/ 
 
An algorithm for mentally computing the phase of the moon with 2-day accuracy between 2000 
and 2009 can be found at 
http://www.moonstick.com/in_head_2000-2009.htm 
 
 
Compound Interest 
 
Bidder mentally calculated simple interest on money at 10 years old and compound interest later 
in life as described in his 1856 talk found at http://stepanov.lk.net/mnemo/biddere.html . This 
interest is periodically compounded rather than continously compounded, which would require 
calculating exponentials. I am not aware of any other historical calculator who dealt with this area 
of mathematics. 
 
 
Newer Methods 
 
New methods for calendar calculation seem to appear now and then, and I presume these are 
being used by some. My book from 1993 also contains quite a few algorithms invented or 
adapted for mental calculations to high precision. In addition I have written quite a few papers on 
methods—the papers linked below reside on the Online Materials page of the section of my main 
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website devoted to the book 
http://www.myreckonings.com/Dead_Reckoning/Online/Online_Material.htm . 
 
For example, in the Logarithms section above we saw a method of calculating the logarithm of a 
number based on a nearby round number N whose logarithm is much easier to find. However, 
there are various other approximation schemes for finding such a logarithm. The most generally 
useful one of these, I think, is the following relation for n small compared to N: 
 

ln (N + n)  ≈  ln N + 2n/(2N + n) 
 
Compared to the problem in the earlier Logarithms section, the correction term to add to log 483 
to find log 487 when using this new formula is .4343(8/970) =  0.00358, accurate as before to the 
last digit. If additional digits were taken for ln N and for this correction term, it would be found to 
be more accurate than the earlier result obtained by truncating the first term of the power series. 
 
It’s also possible to extend the Newton-Raphson method to churn out digits of a square root one 
or two at a time indefinitely, or at least until the calculator has reached their limit of time or 
ability. It’s not necessary to read the book for this, as the method is provided in full in the 
following papers: 
 
http://www.myreckonings.com/Dead_Reckoning/Chapter_3/Materials/Another_Square_Root_Ex
ample.pdf 
http://www.myreckonings.com/Dead_Reckoning/Chapter_3/Materials/Square_Root_of_121432.p
df 
http://www.myreckonings.com/Dead_Reckoning/Chapter_3/Materials/Alternate_Derivation_of_
Square_Root_Algorithm.pdf 
 
Manny Sardina has produced approximation algorithms for integer and fractional roots of 
numbers based on continued fraction representations: 
 
http://www.myreckonings.com/Dead_Reckoning/Online/Materials/General%20Method%20for%
20Extracting%20Roots.pdf 
 
There are also various methods for calculating exponentials that were not used historically by 
mental calculators. The most promising one from the book is detailed in the following paper: 
 
http://www.myreckonings.com/Dead_Reckoning/Chapter_4/Materials/Bemer_Exponentials.pdf 
 
John McIntosh has discovered another method for exponentials that only requires knowing log 2 
= .3010300 and log 3 = 0.477121. His presentation of this can be found at 
 
http://www.urticator.net/essay/6/641.html 
 
Algorithms for approximating trigonometric functions are also presented in the book. And in an 
odd grouping of functions sharing a similar approximation technique, I have written a paper that 
describes methods for mentally calculating the tangent, hyperbolic tangent, exponential and 
logarithmic functions to high accuracy: 
 
http://www.myreckonings.com/Dead_Reckoning/Online/Materials/Fast_Approximation_of_Elem
entary_Functions.pdf 
 



22 

Finally, although lightning calculators historically could find products of two 4-digit problems or 
more (Zerah Colburn at 7 years old could multiply two 4-digit numbers), I wrote a paper on what 
I believe is an easier way to perform this task, one that is particularly useful when the difference 
between the first half and the second half of one of the numbers is small: 
 
http://www.myreckonings.com/Dead_Reckoning/Chapter_2/Materials/A%20Method%20for%20
4x4%20Digit%20Mental%20Multiplications.pdf 
 
It seems that some modern calculators have picked up on some of these methods, particularly the 
one for inexact square roots, which has now appeared in simplified form in a couple of other 
books. 
 
This, then, represents a short summary of some of the methods that have been developed for 
mental calculation. Again it is important to realize that lightning calculators historically 
developed highly individualized ways of doing things, and many of those ways were fairly 
inefficient. But optimum efficiency was not necessarily critical, particularly considering the lack 
of objectivity among those reporting the exploits of these individuals. To grasp the true history of 
lightning calculators and their art it is important to recognize this media partiality, and this is the 
subject of the next part of this essay. 
 
 
Part III: The Media 
 
Mental calculators of yesteryear were usually 
described in magazines, newspapers and 
books in ways that can be startling in our 
more cynical age. But even today newspaper 
articles, documentaries and television 
features on modern lightning calculators 
appear almost regularly, often with a “hook” 
such as diminished capabilities in other areas 
(the “Einstein” effect). Surely there must be 
some reports that try to be objective, but I 
haven’t found them. At best they are naively 
written by people with little mathematical 
background; at worst they use considerable 
license (deception, really, if only by 
omission) to present a better story. This part of the essay is not directly related to the historical art 
of mental calculation itself, but I think it serves as a cautionary tale in evaluating articles on it. 
 
 
Hans the Clever Horse 
 
Let’s take a quick look at a historical example of media misrepresentation, in this case an 
unintentional one. In the late 1800s and early 1900s the horse shown in the pictures here (Clever 
Hans) was thought to have the ability to perform arithmetic as well as other reasoning tasks 
expressed by tapping a hoof a certain number of times. The New York Times wrote a feature on 
the horse in 1904 (BERLIN'S WONDERFUL HORSE; He Can Do Almost Everything but Talk—
How He Was Taught) that brought enough attention to the matter that the German board of 
education created a team of experts to investigate the situation. Following extensive testing, the 
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New York Times reported (correctly) that the committee 
had found no evidence of trickery and concluded the horse 
was exhibiting genuine skills. Only later did the 
psychologist Oskar Pfungst conduct enough blind tests to 
determine that the horse was reacting to unconscious cues 
by the questioners. (For a really good read on this, see 
http://www.damninteresting.com/?p=384) 
 
So you can’t always believe what you see or read, and 
more generally it takes a critical look (and maybe some 

cynicism) to separate the chaff from the wheat. And when the story is worth retelling, and 
particularly when the calculator is a savant, it’s often difficult to be objective about the subject.  
 
 
Innocent Sources of Hyperbole 
 
Often information for newspaper articles is taken from promotional material or verbal 
descriptions by biased acquaintances or naïve observers, and of course there is always the 
temptation to embellish the truth a bit. There are accounts I’ve read of confederates in the 
audience asking questions or seeding problems with numbers having special properties that make, 
say, multiplication or division with another genuinely produced number much easier. This isn’t 
unlikely if you think of the “showman” type of lightning calculators, ones who mix these 
demonstrations with mentalism or magic (Arthur Benjamin, however, is a true lightning 
calculator as well as a magician). I can also say that the few times I have seen a mental calculator 
in action, the audience cannot distinguish between 
presentations of pure mental calculation and simple, 
standard ways of completing a magic square, for 
example, that I think of as dross. I also think it’s fair to say that incorrect answers are seldom 
reported, particularly if the calculator corrects the error. 
 
Sometimes the problems posed by honest people turn out to be simple for the calculator given 
their extensive practice. For example, Smith records a number of questions that involve the 
number of seconds in some number of years; 
hours in some months, days and hours; cubic 
yards in some cubic miles; and so on for 
various simple multiples of common unit 
conversions known by any calculator of the 
time. 
 
It also happens that the calculator gets lucky in 
a problem selection or in an answer, and then 
it’s one for the record books. Although I’m not 
a lightning calculator by any stretch, I’ve 
certainly benefited from a lucky guess. There was a particularly complicated calculation in my 
physics class once, involving many terms with powers in the numerator and denominator. As I 
was wont to do while students reached for their calculators, I wrote down what I thought the first 
few digits were, which was actually a stretch for me given the problem, and then just wrote two 
more digits randomly. When the first student read out the answer from the calculator only the last 
digit was off, and only by 1. There was absolute silence in that classroom as I turned and changed 
that last digit, and I saw some interesting looks when I turned back around, but of course I never 
said a word about it. 
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People sometimes stumble by providing a problem they think is difficult, such as choosing odd 
numbers or even prime numbers, without realizing that the particular numbers offer a convenient 

shortcut or, more likely, that the calculator has 
already memorized the results for these numbers. We 
will see later that in a documentary on Tammet the 

researchers decided to ask him a high power of a 2-digit number. Were they going to pick an even 
number, or maybe one in which the digits were the same? Not likely—primes seem ideal, and 
there are limited numbers of them. In fact the limits of the calculator display and the powers they 
selected limited the number to less than 40, so how many likely numbers are there? (he was asked 
for 374, 277 and 316 in the documentary, and it is true that 27 is not prime). I can’t claim that 
Tammet knew these, but he may have at least known some intermediate powers of these that 
might have helped (and Tammet has prodigious powers of memory for numbers). This is fine and 
fair game for any lightning calculator in my opinion. Klein, for example, knew a wealth of 
number facts, such as “the first 32 powers of 2, the first 20 powers of 3, and so on.” In fact, in 
referring to Dase’s calculational efforts, Gauss wrote, “One must distinguish two things here; an 
extraordinary memory for numbers and true calculating ability. These are, in fact, two completely 
separate quantities that may be connected, but are not always.” 
 
And it’s easy to read 
through an account 
and unthinkingly 
accept the writer’s 
assumptions. When I 
was young I read an 
account in which the interviewer wrote down a 20-digit number on a napkin and presented it to a 
memory expert for 15 or 30 seconds, after which the person could read it backwards and 
forwards. I realized that I could certainly do that, and a lot of people can, say by mnemonics or by 
grouping it into five 4-digit numbers. In tests by Binet, Diamandi was able to memorize on 
average 11 digits in 3 sec, 16 digits in 5 sec, and 17 digits in 6 sec, although Binet indicates a 
significant error rate. Is this so tough? After all, 3 seconds is really a longer span of time than you 
might think. At Eberstark’s request, Smith tested him by reading aloud single digits at a tempo 
specified by the calculator, about 1.75 sec between digits, for 20 digits, (Eberstark at the end 
extended this to 40 digits). Is this hard? There are those who do in fact perform amazing feats of 
quick memorization (in tests Salo Finkelstein repeated a 20-digit and 25-digit number after 
exposure for 1 sec apiece, a 33-digit number exposed for 2 sec, and 39 digits exposed for 4 sec), 
but the lesson here is to be critical when reading articles or watching programs. 
 
As a final example, in a 2005 performance in the second Arthur Benjamin video listed earlier at 
http://www.youtube.com/watch?v=M4vqr3_ROIk, four audience members were brought on stage 
at the start to verify his answers on calculators. Benjamin did a variety of calculations, most of 
them correctly, but it’s interesting that despite his turning to them to request verification, two of 
his five answers in squaring 3-digit numbers were incorrect. But none of the four challenged his 
answers, and to be honest, I wouldn’t have had enough confidence that I entered the digits 
correctly to have held up a show like that either. So don’t trust observers or judges. 
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Conscious Bias in Reporting 
 

Sometimes the writer or director purposely 
skews the reporting in ways that are probably 
conscious but not that serious—sins of omission 
and that sort of thing in a light piece. For those 
with an interest in the subject beyond casual 
reading, it’s important to notice these nuances. 
 

Smith’s book is rife with contemporary accounts that use phrases such as “in an instant” or “in a 
flash” or “in the blink of an eye” and so forth. And the details of the task are seldom presented, 
even in structured tests by researchers, a fact that absolutely amazes me. Did the calculator repeat 
the problem back to the questioner? Did the questioner write the question down in front of the 
calculator, did the calculator have the problem in view during the test, and was timing (if there 
was any) stopped when the first digit of the answer was being written or the last, or when the 
calculator said “Done” or when the last digit was recited? And we have seen that there are 
particular types of problems (e.g., the number of seconds in a given number of years) that benefit 
hugely from memorized facts. Smith also points out instances in which the set of test questions by 
researchers all shared the same shortcut property—why is that? How many questions were asked 
in all? Were just the correct, speedy ones reported? One rarely if ever has these facts in an 
account of a lightning calculator. 
 
This continues today, of course. Let’s look at a common 
example of subtly slanted reporting. You might think I’m 
seeing bias where there is none, but when you read enough of 
these accounts you begin to see patterns. Alexis Lemaire is an 
extremely talented mental calculator with a specialty of 
extracting 13th roots of 200-digit numbers, a feat that I don’t 
believe is attempted by others. So my comments here are only 
on the reporting and in no way reflect on Mr. Lemaire or his 
abilities. 
 
So here’s a typical news report of a record time set by Lemaire 
at the Oxford Museum of the History of Science, dated July 30, 
2007, by BBC News and found at  
http://news.bbc.co.uk/2/hi/uk_news/magazine/6913236.stm .  
 

The task is to find the 13th root of 
85,877,066,894,718,045,602,549,144,850,158,599,202,771,247,748,960,878,023,
151,390,314,284,284,465,842,798,373,290,242,826,571,823,153,045,030,300,932
,591,615,405,929,429,773,640,895,967,991,430,381,763,526,613,357,308,674,59
2,650,724,521,841,103,664,923,661,204,223.  
The answer's 2396232838850303. Multiply that by itself 13 times and you get the 
above. Even with a calculator you wouldn't beat Alexis Lemaire doing the 
calculation in his head. 

Another article from 2005 on such a record, shown in the figure above, can be found at 
http://www.timesonline.co.uk/tol/news/world/article378484.ece . 
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Now let’s look at this article of another such record from any of the seven reports I found 
very quickly online via Google. For direct comparison with the first one above I’ll choose 
BBC News again, dated December 11, 2007, and found at 
http://news.bbc.co.uk/2/hi/uk_news/england/london/7138252.stm . 

The fastest human calculator has broken his own mental arithmetic world record.  

Alexis Lemaire used brain power alone to work out the answer to the 13th root of a 
random 200-digit number in 70.2 seconds at London's Science Museum.  

The 27-year-old student correctly calculated an answer of 2,407,899,893,032,210, 
beating his record of 72.4 seconds, set in 2004.  

The so-called 'mathlete' used a computer package to randomly generate a number before 
typing in the answer. 

So here we are given a little more information on how the test was performed. But do you see the 
real difference here? The randomly generated number is not reported, just the root. Why is that—
generally the huge number is much more impressive to present than the root. Well, let’s see what 
that randomly generated number was: 

9147439728147451289480367741620143028356421050343238533956132727693345422960930
4646471925094518114771016258896592907441426349897556504145570960203925503679105
245199142338806082494254050610000000000000 

It doesn’t look so random. In fact, it wasn’t the power that was randomly generated (after all, 
what are the odds that a randomly generated number would be a 13th power?), but rather the root 
was randomly generated and the power calculated from that value. Which is fine, but it seems 
apparent to me, at least, that they would have reported the power if it didn’t end in thirteen zeros. 
The reader might immediately intuit that last digit of the root is 0, so it detracts slightly from the 
effect and makes them consider that it was a lucky break. In fact the last digit is always identical 
in a number and its 13th power so it’s always trivial to find it, but this now makes the second-to-
last digit trivial (the digit 1). I see a little bias on the part of the reporter, and I saw this in every 
report of this event I could find. 

Let’s take a news report of another record-breaking event from November 16, 2007, found at 
http://www.shortnews.com/start.cfm?id=66565 

27-year-old Alexis Lemaire from France has set a new world record by mentally 
calculating the 13th root of a 200-digit number in 72.4 seconds. He correctly identified 
the answer as 2,397,207,667,966,701. The previous record was 77 seconds. 

No 13th power listed here either. And I believe the reason is that this power is 
863323488003528436101269900223134685104773709307559921526813903477953230
975116871700576364808072714138332471217057631111085584156234580200185256
12852897226196105357173387251523920946707380414694987101 

With the power and root in view it doesn’t take too long to figure out that any power ending in 01 
would have roots ending in 01, so this was again a case in which the last two digits are found 
instantly. This may not have been a lot of help to Lemaire, as he probably knows all two digit 
endings of 13th roots, but again this is all about the reporting. Also, these are situations where it’s 
easy for us to see the advantages of a particular number, whereas lightning calculators have a 
wealth of stored number facts that can make certain problems much easier in a less apparent way, 
and it only takes one lucky number to break a record. 
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Deconstructing the BrainMan Documentary 
 
Let’s take a look at a documentary that in 
my opinion inadvertently reveals itself as 
duplicitous. This may seem a bit tedious, 
but I’m kind of proud of the mathematical 
detective work I did in uncovering this. 
 
Daniel Tammet holds the world record for 
memorizing pi (22,514 digits in all!), he 
has appeared on 60 Minutes and David 
Letterman’s show, and he has written a 
recent autobiography titled Born on a Blue 
Day: Inside the Extraordinary Mind of an 
Autistic Savant (see http://www.optimnem.co.uk/book.php). He has some talent with mental 
calculation as well, and he was featured in a popular 2004 documentary called BrainMan  (titled 
The Boy With The Incredible Brain in the UK). The documentary won a Royal Television Society 
award in December, 2005, and was nominated for a BAFTA in 2006. 
 
Tammet experiences synaesthesia, the ability to see or experience numbers as shapes, colors and 
textures. Here's a typical excerpt from an article on him: 
 

Tammet is calculating 377 multiplied by 795. Actually, he isn't "calculating": there is 
nothing conscious about what he is doing. He arrives at the answer instantly. Since his 
epileptic fit, he has been able to see numbers as shapes, colours and textures. The number 
two, for instance, is a motion, and five is a clap of thunder. "When I multiply numbers 
together, I see two shapes. The image starts to change and evolve, and a third shape 
emerges. That's the answer. It's mental imagery. It's like maths without having to think." 

 
Now I was asked awhile back about Tammet's solution of 13/97 in the BrainMan documentary. I 
had not seen it, but I replied that division by a two-digit number like 97 is not difficult (130/97=1 
remainder 33, 330/97=3 remainder 30+3(3)=39, 390/97=4 remainder 2, etc., so we get .134... and 
so on---lightning calculators can fly through this). However, we saw earlier here than the 
reciprocal of 97 consists of repeating groups of 96 digits. I thought it likely that either half the 
repeating group or all the repeating group of 1/97 was memorized, because changing the 
numerator to any 2-digit number less than 97 simply cycles the starting position of the repeating 
group to another location. In fact, Aitken had remarked on the commonly proposed problem of 
this reciprocal in his talk found at http://stepanov.lk.net/mnemo/aitkene.html : 

 
Here the remark was made that memory and calculation were sometimes almost 
indistinguishable to the calculator. This was illustrated by the recitation of the 96 digits of 
the recurring period of the decimal for 1/97, checked by Dr. Taylor. Probably because 97 
was the largest prime number less than 100, this particular example had been frequently 
proposed. 

 
Actually, I suspect division by 97 is often asked because it takes a whole 96 digits before the 
digits start repeating. 
 
Later that day it occurred to me that there might be a way to detect whether that problem was 
solved by Tammet through a memorized repeating group. The reciprocal of 97 is  
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1/97 =  
.010309278350515463917525773195876288659793814432| 
 98969072164948453608244226804123711340206185567| 
 010309278350515463917525773195876288659793814432| 
 98969072164948453608244226804123711340206185567|  
 01030927...  

 
and also  
 

13/97 =  
.134020618556701030927835051546391752577319587628| 
 865979381443298969072164948453608247422680412371|  
 134020618556701030927835051546391752577319587628| 
 865979381443298969072164948 453608247422680412371|  
 13402062...  

 
I've added vertical bars at each half of the 96-digit repeating group. We can see that each decimal 
expansion starts repeating every 96 digits. In addition, each digit in one half of the repeating 
group is the difference from 9 of the corresponding digit in the other half of the repeating group 
as mentioned earlier in the Fast Division section of this essay. So to produce 1/97 we can just 
memorize the first 48 digits of the repeating group, and then repeat that it but subtract each digit 
from 9. Again, Aitken had done that in anticipation of being asked for it in performances.  
 
You can see that 13/97 has simply cycled the repeating group to the position near the end that 
starts with 134. The starting point for a given numerator is not predictable, but we can just divide 
13 by 97 to a few digits (.134) to find the start, or we can multiply 13 by the first few digits of the 
repeating group for 1/97 (.0103) to find 134 as the starting point. If only the first half of the 
repeating group of 1/97 is memorized, we would see if 134 is in that group, and if it isn't there 
(like now) we look for the 9's complement 865 in that group, which is found near the end. So we 
start at that point, listing the 9's complement of each digit as we cycle around the start of that 
half-group, and when we reach 865 again we repeat the steps but don't take the 9's complement. 
So we can always get away with memorizing just 48 digits to divide any number by 97. If the 
numerator is greater than 97, it's just a whole number and a fraction with a numerator less than 
97, so we end up being able to divide any number at all by 97 this way. (Technically speaking, we 
only need to memorize 47 digits because the repeating group for division by any number ending 
in 7 ends in 7, but then we’d have to remember that fact.).  
 
Well, I thought that given the different starting position of 13/97, if Tammet were using a 
memorized half or full repeating group of 1/97, a verbal hesitation might be detectable at the end 
of this group as he "resets" his memorized or mnemonic digits to the start of this group. The 1/97 
repeating group ends with the digits 567 and then cycles back to the beginning to 010... This 567 
sequence occurs in the 11th to 13th position in 13/97. If Tammet hesitated between stating the 7 
in the 13th position and the 0 in the 14th position in reciting 13/97, it would be evidence that the 
memorized group (or half-group) of 1/97 was being utilized.  
 
So after all of this I finally watched the documentary online. You can find the complete UK 
version of the documentary in 5 parts on YouTube. The first part is at 
http://www.youtube.com/watch?v=AbASOcqc1Ss . Google Video has the U.S. version in a single 
video, but it does not include the scene with the whiteboard that I will refer to below. 
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The 13/97 calculation is not far into the documentary (at 1:49 in Part 1), so it's quite interesting to 
watch all of it up to that point to see how the shapes/crystallization process is described. He 
actually does the 13/97 calculation twice back-to-back, it turns out. 
 
We don’t hear the problem posed to Tammet in the video, so we don’t know the delay between 
when the question was asked and the response was begun. Tammet slowly recites the digits of the 
answer all the way up to 5..6..7 and then—he comes to a total halt! He has lost his place, the 

questioner mentions that he is carrying on, he says he's carrying on, 
then he says to tell him to stop or ... and the interviewer stops him. I 
about fell off my chair. The interviewer asks him how many places he 
can do it to, and Tammet replies, "A hundred—nearly a hundred." To 
me this reveals that he has done division by 97 before, and as we know 
if you can do 96 digits you can repeat them as long as you want to. 
 

And this brings me to something very misleading---that the interviewer implies here that division 
gets harder as you get further into the solution. This is absolutely false—in division it’s just as 
easy to get the 1,000th digit as it is to get the 2nd digit. It is not like, say, a square root. 
 
And I'm in luck—Tammet is going to repeat his answer after the interviewer retrieves a computer 
to get more digits. And here I will say that anyone who digs up an old 8-digit calculator to go test 
a savant on his calculating abilities, especially on division, can only be setting up a dramatic 
scene in a fluff piece. And another thing: the interviewer tells Tammet to wait, they are going to 
go find a computer, then come back, boot it up, sync the camera to the vertical sync of the video 
card, run the calculator application, and ask him the very same problem to see how many digits 
he can do?? And what would someone like me be doing the whole time they're fiddling around? 
I'd be furiously calculating more digits in my head, that's what.  
 
But Tammet starts reciting again at about the same rate as the video scans the digits on the 
computer screen. He gets to the 5..6..7... and to my astonishment at that exact moment (and I 
mean exactly at the instant the next digit would be uttered) a voiceover is spliced into the video, 
saying two superfluous things—that every digit is correct (which we would know if the voiceover 
wasn't there) and that he will eventually exceed the 32 digits of the computer (which we find out 
when we get there). Also, at this same point a video cut is shown of his hands making movements 
on the table. Then the audio and video return to him reciting about a dozen places later. If you 
replay the video and you continue reciting the correct digits during the voiceover, you find that 
Tammet would have had to have sped up significantly to have been at that point when they return 
to his recitation, although to be fair he does speed up at the very end of it all. 
 
So it strongly appears to me that the documentary covered up for him on what I think must have 
been some sort of difficulty at the point I predicted. Not a big deal, maybe, but the producers 
went to a lot of trouble to deceive us on this, and 
that’s makes me question the validity of the 
whole enterprise. 
 
In Tammet's book on page 4 he says he 
"calculates" divisions like 13/97 by seeing 
spirals rotating in loops that seem to warp and 
curve, and in fact if you go to nearly the end of 
Part 4 of the documentary (from 9:41 to 9:44 in 
http://www.youtube.com/watch?v=UqLzoiVzE
Y8) and look carefully when Tammet is tracing 
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such a spiral on the whiteboard (see the frame capture here), you’ll find it is being drawn right 
below "1/97". So this divisor pops up again, lending credence to the theory that it was half- or 
fully-memorized. 
 
Finally, let’s look at the three integer powers that are asked of him. Very early in Part 1 (at 0:58 
in http://www.youtube.com/watch?v=AbASOcqc1Ss) the narrator says that Tammet was asked to 
find 374. We don’t see it asked, we just see the interviewer punching 37 x 37 x 37 x 37 extremely 
slowly into the calculator, followed by a continuous pan to Tammet, who looks up and recites the 
answer. So the question was asked at some unknown time prior to the entry into the calculator. 
 
Later in the Part 4 of the documentary (at 0:40 in 
http://www.youtube.com/watch?v=UqLzoiVzEY8) Tammet is asked to find 277 and 316 in two 
apparently unplanned, poorly executed tests by two neuroscientists (are there no x^y keys on 
these calculators??). We’ll never know how long it took to find the results because the 
documentary has so many cuts injected there that our sense of time is destroyed while the 
background music gives a false sense of continuity. We do see that they don’t start a small timer 
until 4 seconds after one of the problems is given. Again, the producers of the documentary 
mislead the audience by compressing the timescale. And for those who still might have thought 
the documentary to be unbiased, a voiceover appears during the latter calculation to blame 
whatever delays there were (what were they?) on jet lag. 
 
So to summarize all this, in the process of trying to analyze Tammet’s method I found strong 
evidence that the BrainMan documentary in several ways actively misled the viewers. And of 
course this all has to do with the producers of the documentary themselves, not Daniel Tammet. 
And that’s why you have to be critical of these sorts of things. 
 
Now let’s consider the first part of the documentary listed earlier on Rüdiger Gamm at 
http://www.youtube.com/watch?v=NUsD2V6ijyQ&feature=related . Very early into it, just after 
0:40 sec, Gamm announces to an auditorium that he will attempt to divide the prime number 109 
into a 2-digit number provided by an audience member. He will attempt to go 100 digits after the 

decimal place. After receiving a number of 
93, Gamm repeats the problem “93/109” 
and focuses on the problem for a total of 11 
sec. Then he starts reciting the digits, very 
soon accelerating and reciting the digits as 
fast as he can say them. 
 
Every alarm in your head should be going 
off about now. Is the number Gamm chose 
(109) one of those primes whose reciprocal 
has the maximum possible repeating group 
(108 digits)? Did he recite only 100 digits 

so the repetition after 108 digits wouldn’t be noticed? Yes, and in my opinion, yes. Here’s the 
reciprocal of 109 with vertical bars separating halves of the repeating group as in our earlier 
example for 97: 
 

1/109 = 
.009174311926605504587155963302752293577981651376146788| 
 990825688073394495412844036697247706422018348623853211| 
 009174311926605504587155963302752293577981651376146788| 
 990825688073394495412844036697247706422018348623853211| 
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 0091743119… 
 
So the repeating group does have 108 digits, and as always in this case, the digits in the second 
half are the 9-complements of the corresponding ones in the first half. So let’s take the submitted 
numerator 93 and mentally divide it by 109 to three digits. We can divide 93 by 110 instead and 
adjust for the offset in each step by adding the previous digit, as presented earlier in the Fast 
Division section for division by a number ending in 9: 
 

93/11 = 8 remainder 5 
(50+8)/11 = 5 remainder 3 
(30+5)/11 = 3 remainder 2 

 
and we locate 853; it’s in the second half of the group near the end. If the repeating group for 109 
is memorized (or even half of it as described earlier since the other half is the 9’s-complement), 
it’s child’s play to recite the digits. 
 
Now I don’t know how Gamm actually performed this feat. If you practice just a bit with the 
adjusted division process you can develop a kind of rhythmic cadence as you go: 
 
 93   8   58   5   35   3   23   2   12   1   11   0   10   0   100   9   19   1   81   7 … 
 
This is remarkably easy if you try it without reading it. Stating the bolded digits out loud really 
helps to append them to the remainder of the next division. Gamm does seem to develop a sort of 
cadence in the video, and he is a phenomenal calculator, so it’s likely that he is just amazingly 
fast at this. In any event, to judge the performance it’s important to realize that an adjusted 
division technique exists, and it’s also worth noting that with some memorization you too could 
walk into an auditorium and perform as well as Gamm on this. 
 
 
The Appeal of the Mental Calculator 
 
The study of lightning calculators of the past is a fascinating one for me from a mathematical 
aspect more than a psychological one. We’ve seen years of articles by educators bemoaning the 
dependence of students on calculators, but I see little in school textbooks on mental math other 
than simple estimation. And yet when I have presented basic methods of mental calculation to 
classes (elementary and college), I’ve met with incredible interest. Certainly the BrainMan 
documentary is a very popular one. But these types of presentation generally ascribe abilities in 
these areas to mysterious machinations in the minds of remote geniuses, which makes for a good 
story but can be discouraging. In fact, these individuals through talent and training acquired a 
knack for racing headlong through calculations that are not mysterious at all once the methods are 
taught. 
 
And they are not being taught. Mental calculation can be a highly creative and satisfying 
endeavor offering a variety of interesting strategies, more than I have presented here and many 
more than most people realize. It is a skill that engages both children and adults, and one that 
naturally leads to a real familiarity with the properties and relationships of numbers. It provides a 
useful and fun approach for developing a number sense and generating a true appreciation for the 
elegance of elementary mathematics. It should not be a neglected art. 
 


