The Age of

Graphical Computing

A.D. 1844
A.D. 1974

A 2010 Calendar

Have you ever had to calculate the positions of astronomical objects? Orbital calculations relative to an observer on the Earth require derivations and timeconsuming solutions of spherical trigonometric equations. And yet these kinds of calculations were accomplished by ancients such as Vitruvius and Ptolemy in the days prior to the advent of calculators or computers, or even trigonometry or algebra, using methods of Descriptive Geometry that are rarely taught today.
$z_{H}=\arccos (\sin \phi \sin \delta+\cos \phi \cos \delta \cos \tau)$
$A_{H}=\arccos \left(\frac{\sin \delta \cos \phi-\sin \phi \cos \delta \cos \tau}{\sin z_{H}}\right)$
where: $\quad \phi=$ terrestial latitude
$\delta=$ current solar declination
$\tau=(n / 6) \arccos (-\tan \phi \tan \delta)$
$n=$ the number of unequal hours before or after local noon
$z_{H}=$ the zenith angle of the sun
$A_{H}=$ the altitude of the sun above the horizon

The Greeks folded (rabatted) the fundamental great circles onto the page and performed intricate geometrical constructions to map the Earth-Sun relative motion and incorporate local measurements into global maps and sophisticated sundials.

Astrolabes, quadrants and other volvelles and dials evolved to perform more complex computations in graphical form. In 1610-1614, Joost Bürgi and John Napier invented logarithms, and mathematicians and scientists such as Johann Kepler created tables of logarithms to aid in computation. William Oughtred and others developed the slide rule in the 1600 sased on the properties of logarithms, and the slide rule continued its dominant role in non-graphical computation until the early 1970s. The slide rule provided the greatest versatility in computing the vast variety of equations, but it required multiple error-prone steps to provide solutions, effort that was not decreased even when solving one equation repetitively.

Meanwhile, on the graphical front Rene Descartes created the Cartesian coordinate system in the $17^{\text {th }}$ century, and mathematicians over the next two centuries laid the foundation for applied numerical mathematics in large part on this field of analytical geometry. A twodimensional graph provided fast solutions to an engineering precision for a single equation in two variables, and more complicated families of curves or so-called intersection charts extended the use of Cartesian graphs to one additional variable.

\qquad

In 1844 Leon Lalanne succeeded in linearizing the curves $y=x^{p}$ by plotting the first \log-log plot in history, thereby creating his Universal Calculator, chock-full of lines for common engineering calculations and capable of graphically computing formulas in powers or roots of x (or of trigonometric functions in x) with ease. The year 1844 is taken here as the start of the Age of Graphical Computing. Other graphical methods evolved, and ultimately the field of nomography was invented in 1880 by Maurice d'Ocagne, a breakthrough in graphical computing so radical that it dominated the field of graphical computing until the spread of computers and electronic calculators in the early 1970 s.

This 2010 calendar predominantly treats the field of nomography and the amazing variety of nomograms that can be created from it. A nomogram is a layout of graphical scales for computing formulas of 3 or more variables using a straightedge such as a ruler or the edge of a sheet of paper. A drawn or imagined isopleth connects matching values of variables for a particular formula, so if all variables but one is known, the unknown variable can be read off the intersection of the isopleth with its scale. Variables that cannot be isolated algebraically can be read directly off a nomogram. Beyond their practical use, the scales of a nomogram often create geometric figures and curves of a certain beauty and flair, influenced to a striking degree by the cleverness of the nomographer. Simple nomograms can be seen today at times in engineering catalogs and medical offices, but the really creative ones, the ones that universally draw interest and display the wondrous virtuosity of mathematics, are nowhere to be found anymore.

Nomograms can be created with geometric relations, but the more extraordinary ones are nearly always created using a method of determinants developed by d'Ocagne. Sometimes in this calendar you will see an equation adjacent to a nomogram, in which the determinant of a matrix is set equal to zero. When the determinant is expanded, you will see that the resulting equation matches the overall equation of the nomogram. If the determinant is in a form where no variable appears in more than one row and the last column is all 1's, then the first two elements in each row represent the (x, y) location of the scale point for values of the variable(s) in that row. For example, using the rules for expanding a determinant the equation $w=u /\left(u+v^{2}+1\right)$ or $u w+v^{2} w+w-$ $u=0$ can be expressed as
$\left|\begin{array}{ccc}0 & u & 1 \\ 1 & -v^{2} & 1 \\ w & w & 1\end{array}\right|=0$
so a tick on the u-scale lies at $(0, u)$ for every u, (or in other words the u-scale is a linear, vertical scale), the ticks on the v-scale are at ($1,-\mathrm{v}^{2}$), and the ticks on the w scale are at ($\mathrm{w}, \mathrm{w)}$ resulting in a linear 45 degree scale.

The nomograms in this calendar are representative of some of the variety once in use for graphical computing, but in no way does it approach a significant survey of this rich field of study. Perhaps a 2011 calendar will consider other designs. Additional information on nomograms and other topics in this calendar can be found in articles on my blog, "Dead Reckonings: Lost Art in the Mathematical Sciences" at http://www.myreckonings.com/wordpress. I hope you have a happy year in 2010.

[^0]Ron Doerfler
rondoerfler@myreckonings.com

Lalanne's Universal Calculator

In 1844, Leon LaLanne created the first log\log plot in history, his Universal Calculator.

The product of x and y is found from their intersection with the 45° lines, squares at the 45° line from the origin, cubes from the steeper (Cub) line from the origin or its wraparound, and various engineering and chemical formulas of roots and powers at their lines. Following the line to the edge continues a calculation to additional terms.

Trigonometric functions are plotted along the sides for use (or use of their inverses) in calculations as well.

LaLanne envisioned copies of his Universal Calculator posted in public squares and business meeting places for popular use.

JANUARY

Sunday	Monday	Tuesday	Wednesday	Thusday	Friday	Saturday
						2
3	4	5	6	7	8	9
10	11	12	13	14	- 15	16
17	18	19	20	21	22	23
24	Mantinu Luther King ${ }^{2}$ ay 25	26	27	28	29	$\bigcirc 30$
31						

Lallemand's L'Abaque Triomphe

In 1885, Charles Lallemand, director general of the geodetic measurement of altitudes throughout France, published a hexagonal chart for determining the compass course correction (the magnetic deviation) due to iron in the ship, Le Triomphe for any navigable location on Earth. It is a stunning piece of work, combining measured values of magnetic variation around the world with eight magnetic parameters of the ship also measured experimentally, all merged into a very complicated formula for magnetic deviation as seen at the top of the chart.

Abaque hexagonal donnant sans calcul et sans relèvements la déviation du compas, pour le bateau * Le Triomphe».

The sample calculation on the chart is described above:

1. The ship latitude and longitude is located among the curved lines on the leftmost map and a horizontal line is extended to the compass course ζ^{\prime} in the center hourglass grid (a distance $Y_{1}=B \sin \zeta^{\prime}$ from the vertical green line)
2. The ship latitude and longitude is found in the upper (for a northerly heading) or lower (for a southerly heading) map and a line parallel to the grid is extended to the corresponding compass course in the twisted grid (a distance $Y_{2}=A+$ $C \cos \zeta^{\prime}+D \sin 2 \zeta^{\prime}+E \cos \zeta^{\prime}$ from the angled green line).
3. A translucent hexagonal overlay (shown in blue) is overlaid so that two arms pass through the two marked points. Through a geometric exercise, it can be shown that the magnetic deviation (compass correction) Y_{3} on the third scale is the sum of Y_{1} and Y_{2}.
[^1]
FEBRUARY

The Scottish mathematician and lawyer Archibald Smith first published in 1843 his equations for the magnetic deviation of a ship, or in other words, the error in the ship's compasses from permanent and Earth-induced magnetic fields in the iron of the ship itself. This effect had been noticed in mostly wooden ships for centuries, and broad attempts to minimize it were implemented. But the advent of ships with iron hulls and steam engines in the early 1800s created a real crisis. A mathematical formulation of the deviation for all compass courses for a location at sea was needed in order to understand and compensate for $i t$. Smith invented graphical methods for quickly calculating the magnetic deviation for any ship's course once ship parameters were found, geometric constructions called dynamogoniograms (force-angle diagrams), or dygograms for short.

Alternate graphical computers
(3) corve op DEvaross

To construct a dygogram, find the North (N) position by laying out from O the lengths $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ and \boldsymbol{E} as shown. Draw a circle centered at A and passing through D. The magnetic deviation δ for a magnetic course ζ of North (0) is the angle XON read on the protractor.
Now extend ND the same distance beyond D to find the South (S) point. The point Q is the intersection with the circle. Continue to create the Limaçon of Pascal figure by moving the midpoint of the segment NS along the circle and marking the endpoints.

δ is the magnetic deviation (compass correction)
ζ^{\prime} is the ship compass reading (compass course)
$A, D, E, \lambda, c, f, P$ and Q are magnetic parameters measured for the ship

H and θ are the horizontal component and dip angle of the Earth's magnetic variation at the ship location

$$
\begin{aligned}
& A=\arcsin \boldsymbol{A} \\
& B=\arcsin [\boldsymbol{B} /(1+1 / 2 \sin D)] \\
& C=\arcsin [\boldsymbol{C} /(1-1 / 2 \sin D)] \\
& D=\arcsin \boldsymbol{D} \\
& E=\arcsin \boldsymbol{E} \\
& \boldsymbol{A}, \boldsymbol{D}, \boldsymbol{E}=\text { constants for ship } \\
& \boldsymbol{B}=(1 / \lambda)(\mathrm{ctan} \theta+P / H) \\
& \boldsymbol{C}=(1 / \lambda)(\mathrm{f} \tan \theta+Q / H)
\end{aligned}
$$

For any ship compass reading (the compass course (ζ^{\prime}), draw a line from Q at this angle from QN (the red arrow here) and mark the point where it crosses the vertical line OX. Then with dividers construct an arc that passes through O, Q, and this point (the blue circle) and mark a new point where it crosses the limaçon (the magnetic course ऽ). The magnetic deviation δ is the angle between OX and this new point as read on the protractor.

MARCH

Sunday		Monday	Tuesday	Wednesday	Thursay	Friday	Saturday
		1	2	3	4	5	6
7		8	9	10	11	12	13
14	\bullet	15	16	17	18	19	20
21		22	23	24	25	26	27
28	\bigcirc	29	30	31		T"T:	"

Nomography was invented in 1880 by Maurice d'Ocagne and was used extensively for many years to provide engineers with fast graphical calculations of complicated formulas to a practical precision.

A traditional three-variable graph

Parallel-Scale Design: $f_{1}(u)+f_{2}(v)=f_{3}(w)$ Take logarithms to convert the equation to a sum

Example: $\quad N=(1.2 D+0.47)^{0.68}(0.91 T)^{3 / 2}$

A parallel-scale nomogram

A straightedge (such as the edge of a sheet of paper or a string) called an isopleth is used to connect known values to find the unknown value.

The simplicity of a nomogram can be startling!

$\mathrm{m}_{1}=$ height/range for D scale $\mathrm{m}_{2}=$ height/range for T scale $m_{3}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ $\mathrm{a} / \mathrm{b}=\mathrm{m}_{1} / \mathrm{m}_{2}$ and $\mathrm{a}+\mathrm{b}=$ width

APRIL

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
sw Tw wros	" ${ }^{\text {T w T }}$ -			1	2	3
4	5	6	7	8	9	10
Easter Sumay						
11	12	13	- 14	15	16	17
18	19	20	21	22	23	24
25	26	27	$\bigcirc 28$	29	30	

Two Classic Nomogram Designs

Division $\quad f_{3}(w)=\frac{f_{1}(u)}{f_{2}(v)} \quad \begin{aligned} & \text { Here we have } \\ & \mathrm{r}^{2}=\mathrm{V} / \pi \mathrm{h}\end{aligned}$

An "N" or "Z" Chart
Design:

Harmonic Relation $\frac{1}{f_{1}(u)}+\frac{1}{f_{2}(v)}=\frac{1}{f_{3}(w)}$
Design: $\quad m_{1}=m_{2}=\frac{m_{3}}{2 \cos A}$
where A is the angle between each of the 3 scales.
If $\mathrm{A}=60^{\circ}$ as below, then $\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}_{3}$.

A Concurrent-Scale Nomogram

Standard resistor values can be marked so a convenient combination can be found by playing with the straightedge.

MAY

							1
2	3	4	5		6	7	8
9	10	11	12	-	13	14	15
16	17	18	19		20	21	22
23	24	25	26	O	27	28	29
30	31						,
	Memorial Day						

Proportional Nomograms

4 Variable Proportion $\frac{f_{1}(u)}{f_{2}(v)}=\frac{f_{3}(w)}{f_{4}(t)}$

$$
\frac{m_{1}}{m_{2}}=\frac{m_{3}}{m_{4}}
$$

True for all types shown here

Other Layouts

JUNE

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
		1	2	3	4		5
6	7	8	9	10	11	-	12
13	14	15	16	17	18		19
20	21	22	23	24	25	\bigcirc	26
Fathers Day							
27	28	29	30		「"w T \%		

Equations of more than three variables can be graphically computed using compound nomograms sharing scales.

The middle solution scale of the concurrent nomogram for two resistors in parallel can be used as the outer scale of a second nomogram to extend the nomogram for three resistors. A fourth parallel resistor can be added by seesawing back through the first set of scales, and so forth. A series resistor simply slides upward along the scale.

$$
\begin{array}{lr}
\underset{\text { Linear }}{\text { Lompound }} & f_{1}(u)+f_{2}(v)=f_{4}(t)-f_{3}(w) \\
\text { Design: } & \begin{array}{l}
f_{1}(u)+f_{2}(v)=k \\
f_{4}(t)-f_{3}(w)=k
\end{array}
\end{array}
$$

The k -scale is not labeled with scale values. It is called a pivot line.

Since the angle A between the scales is 60 , the scales are
 identical.

JULY

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
(ex				1	2	3
4 Independence Day	5 Independence Day (Obs.)	6	7	8	9	10
- 11	12	13	14	15	16	17
18	19	20	21	22	23	24
$\bigcirc 25$	26	27	28	29	30	31

u

$w^{2}+u w+v=0$

For a real root w_{1} found here, the second root $=u+w_{1}$

$$
\left|\begin{array}{ccc}
-u & 1 & 1 \\
v & 0 & 1 \\
\frac{w^{2}}{w-1} & \frac{w}{w-1} & 1
\end{array}\right|=0
$$

Linear scales and

 easy custom ranges of A and B for$A x^{2}+X+B=0$
No need to graduate the circle! Read the roots as -B on lines from 0 through the marked location on the circle (here -3.06 for $A=-0.1, B=4$)

Wheeler, The Mathematical Gazette, 41:336, May, 1957

Finding real roots graphically
ere,

Not a nomogram, but a network or intersection chart for finding roots of the cubic equation $z^{3}+p z+q=0$. There will be one real root, 3 real roots of which two are equal, or 3 real roots, depending on whether \mathbf{z} (interpolated between the slanted lines) lies outside of the triangular region, on its boundary, or within it. For example, $\mathrm{p}=0.6$ and $\mathrm{q}=-0.4$ gives $\mathrm{z}=0.47$, while $\mathrm{p}=-0.8$ and $\mathrm{q}=0.11$ a gives $z=-0.96,0.82,0.14$.

Two real roots are found if the isopleth cuts the circle, one repeated real root if it touches the circle, no real roots if it misses the circle entirely

Sunday
Monday
Tuesday

Wednesday

Friday
Thursday
.
Saturday

Astronomy

Celestial Parallax: the difference between topocentric and geocentric location when observing comets and minor planets. Done with parallax correction, generally to two digits and in great number to define the orbits:
$\Delta p_{\alpha}=$ parallax factor
$\pi^{s}=$ mean equatorial horizontal parallax of the sun in seconds
$\rho=$ Earth radius to observation point in term of equatorial radius
$\varphi=$ geocentric latitude of observer
$\delta, \mathrm{H}=$ declination and hour angle of body

Once invented, nomograms were soon applied to timeconsuming and repetitive calculations in celestial mechanics

Spherical Triangle relation between declination, latitude, altitude and azimuth

Spherical Triangle relation between declination, latitude, hour angle and azimuth

Kepler's Equation for the relation between the polar angle φ of a celestial body in an eccentric orbit and the time elapsed from an initial point

Kresàk, Bulletin of the Astronomical Institute of
Czechoslovakia, 1957

This is an example of a nomogram solving for a variable (φ) that cannot be isolated algebraically.

Celestial Navigation $\cos Z=(\sin D-\sin H \sin L) /(\cos H \cos L)$

$$
Z=\text { Azimuth of celestial body }
$$

$$
D=\text { Declination of celestial body }
$$

$$
H=\text { Altitude of celestial body }
$$

$$
L=\text { Latitude of observer }
$$

after Leif Roschier-see
http://www.pynomo.org/wiki/index.php/Example:Star_navigation

SEPTEMBER

A 3D (4×4 determinant) nomogram solution for Great Circle Distance

dISTANCE SPHERIQUE DE DEUX POINTS

$\lambda-\lambda^{\prime}=25.2^{\circ}$
$\lambda+\lambda^{\prime}=72.5^{\circ}$
$\mathrm{L}=116^{\circ}$
$\rightarrow \varphi=87.5^{\circ}$

M. Collignon

Here the φ-scale lies the same distance d above the paper as the L-scale lies below it, but they are flattened to the paper. First, points A and B are joined by a line. Then for a given L (point C), all four points will be coplanar if the point on the flattened φ-scale is the same distance from $A B$ as C and on a line parallel to $A B$. A transparent overlay of parallel lines is used to find φ.

Great Circle Distance

$\cos c=\cos a \cos b \cos L+\sin a \sin b$
is the great circle distance (in radians) between two points on a sphere a and b are the latitudes of the two points
L is the difference in longitude between the two points

Angular correction for land surveys

$\sin \varphi-\cos \varphi \tan \varepsilon-\rho \tan \varepsilon=0$

OCTOBER

Shared-Scale Nomograms

With proper mathematical preparation, two or more scales can share a curve, or even share

NOVEMBER

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1	2 Election Day	3	4	5	6
7	8	9	10	11 Veteran's Day	12	13
14	15	16	17	18	19	20
$\bigcirc \quad 21$	22	23	24	25 Thanksgiving	26	27
28	29	30				

An Assortment of Nomograms

A projection transformation for greater accuracy at large X

A compass is used here instead of a straightedge

$$
b R_{M}=\frac{M}{x\left(h_{0}-0.5 x\right)}=\frac{F_{a} R_{a}}{x}
$$

$s=r(1-\cos \alpha)+l\left(1-\sqrt{1-\lambda^{2} \sin ^{2} \alpha}\right)$ with $\lambda=\frac{r}{l}$

Nomograms existed for a variety of vector and complex number calculations

Polar-Cartesian Coordinate
Transformation
The θ scale could actually stop at 45 For angles beyond this, $\theta \rightarrow 90-\theta$ and x and y are swapped.

A rare instance of 4 individual scales for a single isopleth
y

Fig. B-3a. Distributicn coefficients ($K=y / x$) in light hydrocarbon systems, lowtemperature
$1(1953)$.]

DECEMBER

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
swtwTms			1	2	3	4
- 5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	O 21	22	23	24	25
					Chrismas Eve	Chrismas Day
26	27	28	29	30	31	
					New Years Eve	

јо лериәГセว огот V

[^0]: Most of the nomograms herein were created with the PyNomo software package of Leif Roschier found at http://www.pynomo.org. The calendar pages are based on an InDesign template created by Juliana Halvorson at http://www.graphmaster.com/calendarinstructions/. All other content ©2010 Ron Doerfler

[^1]: ζ ' is the current ship compass reading (or compass course)
 H and θ are the horizontal component and dip angle of the Earth's magnetic variation at the ship location
 $\mathrm{A}, \mathrm{D}, \mathrm{E}, \lambda, \mathrm{c}, \mathrm{f}, \mathrm{P}$ and Q are magnetic parameters measured for Le Triomphe

