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Introduction
Nomography, truly a forgotten art, is the graphical representation of

mathematical relationshipsor laws (theGreekword for law isnomos). These
graphs are variously called nomograms (the term used here), nomographs,
alignment charts, and abacs. This area of practical and theoretical math-
ematics was invented in 1880 by Maurice d’Ocagne (1862–1938) and used
extensively into the 1970s to provide engineers with fast graphical calcula-
tions of complicated formulas to a practical precision.
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Figure 1. A nomogram for a simple linear equation.

The simplest nomogram consists of three or more straight or curved
scales, each representing a function of a single variable appearing in an
equation. Figure 1 shows such a nomogram for a linear equation in three
variables. A straightedge is placed across these scales at known values of
the variables, and an unknown variable is found as the value crossed on
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its scale. We will see that this style of nomogram can also be constructed
for much more complicated equations. Nomograms are generally drawn
for equations having three or more variables, where the equivalent graphs
would consist of families of curves or 3D plots. The startling simplicity of
nomograms is apparent by comparison to these multivariable graphs.
Along with the mathematics involved, a great deal of ingenuity went

into the design of nomograms to increase their utility as well as their pre-
cision. Many books were written on nomography and then driven out of
print with the spread of computers and calculators. Nomograms are some-
times observed in the wild today, but in a modern setting they seem odd
and strangely old-fashioned. But an unusual one provokes interest because
of the technical, even artistic, creativity apparent in its design. And there
is much creativity: The theory of nomograms draws “on every aspect of
analytic, descriptive, and projective geometries, the several fields of alge-
bra, and other mathematical fields” [Douglass and Adams 1947]. In fact,
two nomograms for the same equation can look vastly different, depend-
ing on the inspiration of the designers. Looking through publications of
nomograms evokes the feel of browsing an artist’s portfolio.
Slide rules were manual calculators contemporary with nomograms,

and they are familiar today from their appearance; butmost engineers have
never seen a nomogram and wouldn’t know what to do with one if they
did. A slide rule is designed to provide basic arithmetic operations to solve
a wide variety of equations with a sequence of steps, while the traditional
nomogram is designed to solve a specific equation in one step. Although
nomograms are not common today, it’s interesting to note that the quiet,
less flashy nomogram has in fact outlived the more popular slide rule.
This article describes why nomograms work and how they are con-

structed from scratch. We first review designs based on geometric rela-
tionships, then radically advance the possible designs through the use of
determinants, and end with transformations that can be applied to cus-
tomize a nomogram for precise and compact use.

Geometric Design
Nomograms composed of straight scales can be designed by analyzing

their geometric properties, and a variety of interesting nomograms can be
constructed from thesederivations. Certainly, the designs in this section are
the most prevalent types of nomograms. The examples here are presented
as small figures, but in practice the nomograms would be printed on large
sheets of paper with much finer tickmark spacing for greater precision.
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Parallel-Scale Nomograms
Figure 2 shows the basic parallel-scalenomogramfor calculatinga value

f3(w) as the sum of two functions f1(u) and f2(v):

f1(u) + f2(v) = f3(w).

a

b
m1f1(u)

m3f3(w)

m2f2(v)
isopleth

baseline

Figure 2. Derivation for a parallel-scale nomogram.

Each function is plotted on a vertical scale using a corresponding scaling
factor (sometimes called a scale modulus)—m1,m2, orm3—that provides a
conveniently-sized nomogram. The diagonal line represents the straight-
edge solution of the nomogram and is called an index line or isopleth. By
similar triangles,

m1f1(u)−m3f3(w)
a

=
m3f3(w)−m2f2(v)

b
,

m1f1(u) + (a/b)m2f2(v) = (1 + a/b)m3f3(w).

To arrive at the original equation f1(u) + f2(v) = f3(w), we cancel out
all the terms involvingm, a, and b, which is accomplished by setting

m1 = (a/b)m2 = (1 + a/b)m3.

The left two terms of this relationship determine the relative scaling of the
two outer scales, and the third termprovides the scaling of themiddle scale
as

m1

m2
=

a

b
, m3 =

m1m2

m1 + m2
.

The baseline does not have to be perpendicular to the scales for the
similar-triangle proportion to be valid.
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We have a = b for the case where the middle scale is located halfway
between the outer scales, and in this casem1 = m2 andm3 = m1/2. For a
small outer scale, we can change its scaling factorm to increase its length,
which shifts the middle line toward the other outer scale. In fact, if the
unknown scale w has a very small range, it can be moved outside of the
two other scales to lengthen it.
Additions to u, v, or w simply shift the scale values up or down. Mul-

tipliers of u, v, and w multiply the value when drawing the scales (they
are not included in the values of m in the above calculations). Negating
a variable simply reverses the up/down direction of that scale; and if two
variables are negated, their scales can simply be swapped.
This looks like a lot ofwork to create a nomogramto solve a simple linear

equation. But in fact plotting logarithmic rather than linear scales expands
the use of parallel-scale nomograms to very complicated equations! The
use of logarithms allows multiplications to be represented by additions
and powers to be represented by multiplications: log cd = log c + log d
and log cd = d log c. So an equation such as f1(u) × f2(v) = f3(w) can
be converted to log f1(u) + log f2(v) = log f3(w) and plotted as a parallel-
scale nomogram with logarithmic scales.
Let’s create a nomogram for the equation

(1.2D + 0.47)0.68(0.91T )3/2 = N

as shown in Figure 3. We assume that the engineering ranges that we are
interested in are 1.0 < D < 8.0 and 1.0 < T < 2.0.
We first convert the equation to logarithmic form as

0.68 log(1.2D + 0.47) + 1.5 log T = log N − 1.5 log 0.91.

We will plot D, T , and N from our formulas above for u, v and w. To
find the scaling factors, we divide the final desired height of the D- and
T -scales (say, 11 in. for both) by their ranges (maximum−minimum).

m1 =
11

0.68 log[1.2(8.0) + 0.47]− 0.68 log[1.2(1.0) + 0.47]
= 20.73,

m2 =
11

1.5 log 2.0− 1.5 log 1.0
= 24.36,

m3 =
m1m2

m1 + m2
= 11.20.

Let’s set the width of the chart to 6 in.:
a

b
=

m1

m2
= 0.851, a = 0.851b;

a + b = 6, 0.851b + b = 6;

yielding b = 3.241 in., a = 2.759 in.



The Lost Art of Nomography 461

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1.5

2.5

3.5

4.5

5.5

6.5

7.5

D

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

9.5

10.5

11.5

N

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0
T

N = (1.2D + 0.47)0.68(0.91T )3/2

Figure 3. A parallel-scale nomogram for a nonlinear equation.

WedrawtheD-scaleon the leftwithabaselinevalueof 1.0 and tickmarks
spaced out as

20.73×
£
0.68 log(1.2D + 0.47)− 0.68 log

°
1.2(1.0) + 0.47

¢§
,

which will result in an 11-in. scale. Then 6 in. to the right of it, we draw the
T -scale with a baseline value of 1.0 and tickmarks spaced out as

24.36(1.5 log T − 1.5 log 1.0).

Finally, 2.759 in. to the right of theD-scale (a bit left of center), we draw the
N -scale with a baseline of

£
1.2(1.0) + 0.47

§0.68£0.91(1.0)
§1.5 = 1.230

and tickmarks spaced out as 11.20
£
log N − 1.5 log(0.91)

§
.

We arrive at the nomogram in Figure 3, where a straightedge connecting
values ofD and T crosses the middle scale at the correct solution forN . In
fact, any two of the variables will produce the third. This is a surprising
feature of nomograms: They can calculate a solution for a variable that
might be impossible to isolate algebraically. The result here is a deceptively
simple diagram for solving a fairly complicated equation.1

1Most nomograms in this article were drawnwith the PyNomo open-source software, available
free from http://www.pynomo.org.
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N or Z Charts
A nomogram such as in Figure 4 is called an N chart or Z chart because

of its shape. The slanting middle scale joins the baseline values of the two
outer scales (which now run in opposite directions). The middle line can
slant in either direction by flipping the diagram, and it can be just a partial
section anchored at one end or floating in themiddle if the entire scale is not
needed in the problem, thus appearing, as Douglass [1947] puts it, “rather
more spectacular” to the casual observer. An N chart can be used to solve
a three-variable equation involving a division:

f3(w) =
f1(u)
f2(v)

.

Z

Length L

m1f1(u)
f3(w)

m2f2(v)

isopleth

Figure 4. Derivation for an N chart.

By similar triangles,

m1f1(u)
m2f2(v)

=
Z

L− Z
.

Substituting f3(w) for f1(u)/f2(v) and rearranging terms yields the dis-
tance along the diagonal for tickmarks corresponding to f3(w):

Z =
Lf3(w)

(m2/m1) + f3(w)
.

The f3(w)-scale does not have a uniform scaling factorm3 as before. We
could have designed a parallel-scale nomogram with logarithmic scales to
plot this division, but the N chart performs this with linear scales for u
and v and it was once a real chore to create logarithmic scales. Also, the
outer scales of the N chart sometimes need to be linear in order to attach
additional scales in a compound nomogram with additional variables.
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An example of an N chart is shown in Figure 5 for the volume of a
cylinder V = πr2h, where we arrange the formula in division form as

h =
V/π

r2
.
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Volume of a Cylinder: V = πr2h

Figure 5. An N chart for the volume of a cylinder.

For 0 < V/π < 125, 0 < r < 5, 0 < h < 5, and a 10-in.-high nomogram,
m1 = 10/125 = 0.08 and m2 = 10/25 = 0.4. For an 8-in. width, we find
the length of the diagonal h-scale from L =

√
82 + 102 = 12.806. Then the

tickmarks for h are located a distance along the diagonal of

Z =
12.806h

0.4/0.08 + h
.

Finally, we multiply the V/π-scale values by π in order to plot V .
Much more complicated formulas are also easily accommodated. An

N chart is often flipped so the diagonal runs in the opposite direction. It
is also possible to slide the outer scales of an N chart up or down without
changing the tickmark spacing of theZ-scale as it rotates due to its attached



464 The UMAP Journal 30.4 (2009)

ends (because similar triangles still result), producing a nomogram with a
Z-scale perpendicular to the outer scales, as shown later in Figure 16 on
p. 475.

Proportional Nomograms
The proportional chart solves an equation in four unknowns of the type

f1(u)
f2(v)

=
f3(w)
f4(t)

. (1)

If we take our earlier N chart diagram and add a second isopleth that in-
tersects theZ line at the same point as the first, we have by similar triangles
in Figure 6:

m1f1(u)
m2f2(v)

=
m3f3(w)
m4f4(t)

.

m4f4(t)

Figure 6. Derivation for a proportional nomogram.

This relationmatches (1) if we choose the scaling of the outer scales such
that

m1

m2
=

m3

m4
.

We then overlay two variables on each outer scale with this ratio of scaling
factors, as shown in Figure 7 for the ideal gas law pV = nRT expressed as
a proportion V/T = nR/p, where the constant R = 0.0821 L-atm/mol-K.
We design a 10-in.-tall nomogram for the ranges 0 < V < 10 (m1 = 1.000),
0 < T < 353 (m2 = 0.0283), and 0 < nR < 0.1642 (m3 = 60.90). We find
m4 = m3m2/m1 = 1.725. Finally, we divide the nR-scale values by the
constant R in order to plot n (and here the nomogram is reflected so that
the diagonal runs in the opposite direction).
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Figure 7. A proportional nomogram for the ideal gas law.

Another type of proportional chart uses crossed lines within a boxed
area, as shown in Figure 8 for the law of sines of a triangle. Again, the
scaling factors for the four variables are given by m1/m2 = m3/m4. As
in the previous example, this nomogram contains a key demonstrating its
use.
But there are other types of proportional charts, as shown in Figure 9.

• The first type derives from the previous example after a set of sides
is bent at opposite angles, because similar triangles still exist for any
parallelogram.

• In the next two types, the isopleth is drawn between two scale variables,
thenmoved parallel until it spans the third variable value and the fourth
unknown variable.

• In the last type, the second isopleth is drawn perpendicular rather than
parallel to the first one, which is generally superior because a right angle
(such as the corner of a sheet of paper) is much more common than
parallel rulers.
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Concurrent-Scale Nomograms
The concurrent-scale nomogram solves an equation of the type

1
f1(u)

+
1

f2(v)
=

1
f3(w)

.

The effective resistance of two parallel resistors is given by this equation,
as are other problems such as capacitance and lens focal lengths in series.
A geometric exercise shows that the scaling factors for the scale arrange-

ment of Figure 10must meet the following conditions:

m1 = m2 =
m3

2 cosA
.

Here A is the angle between the u-scale and the w-scale and also the angle
between the v-scale and the w-scale. The scaling factorm3 corresponds to
the w-scale. The zeros of the scales must meet at the vertex. If the angle
A is chosen to be 60◦, then 2 cosA = 1 and the three scaling factors are
identical, as is the case in Figure 10. Often the angle A = 45◦ is chosen,
since a rectangular nomogram is a better fit on the printed page.
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Compound Nomograms
Acompoundnomogramcan solve an equation of four ormore variables

by concatenating a series of three-variable nomograms of any type.
The first step is to break the equation into parts in three variables that are

equal to one another. The equation f1(u) + f2(v) + f3(w) = f4(t) can be
rearranged as f1(u) + f2(v) = f4(t)− f3(w). We create a new intermediate
variable k to equal this latter quantity. We can draw a parallel-scale nomo-
gram for f1(u) + f2(v) = k without marking scale values on the k-scale.
Then a second parallel-scale nomogram for f4(t)− f3(w) = k is drawn us-
ing the same k-scale. The blank k-scale is called a pivot line, and often longer
scales result when the pivot line is the middle scale of at least one of the
nomograms. Figure 11 shows such a compound parallel-scale nomogram
for centripetal force F = mv2/r.

1.0

2.0

3.0

4.0

5.0

v
m/sec

10

1
2
4

20

m
kg

1.0

10.0

100.0

0.1

0.2

0.4
0.6

2.0

4.0
6.0

20.0

40.0
60.0

200.0
300.0

500.0

F
N

Pivot

10.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

r
m

10

3

20
40

lbs
10.0

4.0

5.0

6.0

7.0

8.0

9.0

ft/sec

10.0

4.0

5.0

6.0

7.0

8.0

9.0

20.0

30.0

ft

0.10

1.00

10.00

100.00

0.02

0.04
0.06

0.20

0.40
0.60

2.00

4.00
6.00

20.00

40.00
60.00

200.00

400.00

lbs

Centripetal Force: F = mv2/r

Figure 11. A compound parallel-scale nomogram for centripetal force.

To solve the 4-variable equation

1/f1(u) + 1/f2(v) + 1/f3(w) = 1/f4(t),

the equation is rearranged as

1/f1(u) + 1/f2(v) = 1/k, 1/k + 1/f3(w) = 1/f4(t).
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A compound nomogram for 1/R1 + 1/R2 + 1/R3 = 1/R is shown in Fig-
ure 12. The intermediatek-scale is labeledR1 k R2, and the 60◦ angles used
in this nomogram cause theR-scale (R1 k R2 k R3) to coincidewith theR2-
scale. The originalR1-scale can be used for a fourth resistor in parallel. We
can seesaw back and forth to add additional parallel resistors, and we can
slide along the scales to add resistors in series.
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Figure 12. A concurrent nomogram for three resistors in parallel.

Designing with Determinants
It happens that a brief knowledgeof determinants offers a powerfulway

of designing very elegant and sophisticated nomograms, ones that contain
curved scales or grids of scales. A determinant is denoted by vertical bars
along the sides of a matrix of values or functions. The determinant of a
3× 3matrix

√
a11 a12 a13

a21 a22 a23

a31 a32 a33

!

is denoted
ØØØØØ

a11 a12 a13

a21 a22 a23

a31 a32 a33

ØØØØØ

and is the quantity given by

a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33.
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Two common methods of finding a determinant without memorizing
this formula are shown in Figure 13:
• In the first method, the first two columns of the determinant are copied
to the end and diagonals are drawn as shown. The products of the terms
under each diagonal are added or subtracted as indicated to find the
determinant.

• Alternatively, thedeterminantcanbe foundbymentallywrapping thedi-
agonals around to cross the needed terms, shown as the secondmethod.

a11
a21
a31

a12
a22
a32

a13
a23
a33

a11
a21
a31

a12
a22
a32

+ + +___

a11
a21
a31

a12
a22
a32

a13
a23
a33

_

_ _ + +

+

Figure 13. Two methods of finding a determinant.

There are just a few rules aboutmanipulatingdeterminants thatweneed
to know. The first two are true for determinants in general, but the third
and fourth apply only to determinants whose value is 0:
1. We can interchange any two rows or any two columns.
2. We can multiply or divide all the values in any row (or column) by a
number (including 1) and add them to their corresponding values in
another row (or column).

3. We can multiply or divide all the values in any row or column by a
number. (Generally, thevalueof thedeterminant ismultipliedordivided
by that number, since every term has a member from each row and
column; but because we will always work with determinants that are
equal to zero, our determinants are unchanged.)

4. We can change the signs of all the terms in any row or column, for the
same reason as above.
We will see later that there are some transformation operations that can

also be applied to our determinants.
Now consider Figure 14 showing three curvilinear scales and an iso-

pleth. Similar-triangle relations give

y3 − y1

x3 − x1
=

y2 − y1

x2 − x1
=

y3 − y2

x3 − x2

Any two parts of this equation can be manipulated to the determinant
expansion above and therefore we can write it as
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Figure 14. Similar triangle relations for three collinear points.

ØØØØØ

x1 y1 1
x2 y2 1
x3 y3 1

ØØØØØ = 0.

The x- and y-elements can be interpreted as the x- and y-values of f1(u),
f2(v), and f3(w). To plot a three-variablenomogramfrom this determinant,
we need to arrange terms so that
• each row involves only one variable (i.e., x1 and y1 are functions of u
only, x2 and y2 are functions of v only, and x3 and y3 are functions of w
only);

• the last column is all 1s; and
• the determinant is the equation of the nomogram.
A determinant such as this is said to be in standard nomographic form. The
u-scale is then plotted by the parametric functions in the first row, where
the functions x1 and y1 are used to calculate the (x, y)-coordinate for each
value of u on the scale.
For example, the determinant

ØØØØØ

0 u 1
1 −v2 1
w w 1

ØØØØØ = 0

expands to the equation uw + w + v2w − u = 0, or w = u/(u + v2 + 1) as
an equation plotted as a nomogram. Here the x-coordinate of the u-scale is
always 0, so the u-scale is a vertical scale at x = 0with y-values equal to the
u-values over its range. The v-scale is a vertical scale at x = 1with y-values
of−v2 over the range of v. Thew-scale has x- and y-values equal tow, so it
turns out to be a diagonal scale that passes through the origin if the range
of the w-scale includes w = 0. The nomogram is plotted in Figure 15 for
positive values of the variables.
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Figure 15. A nomogram for w = u/(u + v2 + 1).

Straight-Scale Nomograms Using Determinants
On pp. 460–461, we created a parallel-scale nomogram for the equation

(1.2D + 0.47)0.68(0.91T )3/2 = N by using geometric relationships. We can
express the logarithmic form of this as

0.68 log(1.2D + 0.47) + 1.5 log T − (log N − 1.5 log 0.91) = 0.

This is an equation of the form f1(u) + f2(v)− f3(w) = 0, so let’s find a
determinant that produces this general form. Nomography books often
suggest educated guesswork to fill in an initial determinant, which is kind
of fun, but we’ll use a consistent procedure. Nevertheless, converting this
initial determinant to standard nomographic form still requires ingenuity.
If we set A = f1(u) and B = f2(v), then we have
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A× 1 + B × 0− f1(u) = 0 from A = f1(u),
A× 0 + B × 1− f2(v) = 0 from B = f2(v),
A× 1 + B × 1− f3(w) = 0 from f1(u) + f2(v)− f3(w) = 0.

This set of simultaneous equations can be expressed in determinant form
as

ØØØØØØ

1 0 −f1(u)
0 1 −f2(v)
1 1 −f3(w)

ØØØØØØ
= 0.

This expression meets our criteria that the determinant produces the orig-
inal equation and each row contains functions of only one variable. But
we also want the flexibility to introduce scaling factorsm1 andm2 for the
u- and v-scales so they will fit our paper. We can add the scaling factors
without changing the determinant as follows:

ØØØØØØØØØ

1 0 −m1f1(u)

0 1 −m2f2(v)
1

m1

1
m2

−f3(w)

ØØØØØØØØØ

= 0.

Now we can use the rules for manipulating determinants to cast the
determinant into standard nomographic form. Below are the results when
we
• add the second column to the first [1/m1 + 1/m2 = (m1 + m2)/m1m2],
• multiply the third row bym1m2/(m1 + m2), and then
• multiply the third column by −1 and swap the columns around.

ØØØØØØØØØ

1 0 −m1f1(u)

1 1 −m2f2(v)
m1 + m2

m1m2

1
m2

−f3(w)

ØØØØØØØØØ

= 0 =⇒

ØØØØØØØØ

1 0 −m1f1(u)

1 1 −m2f2(v)

1
m1

m1 + m2
− m1m2

m1 + m2
f3(w)

ØØØØØØØØ
= 0
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=⇒

ØØØØØØØØ

0 m1f1(u) 1

1 m2f2(v) 1
m1

m1 + m2

m1m2

m1 + m2
f3(w) 1

ØØØØØØØØ
= 0.

Now the determinant is in standard nomographic form. The scaling factors
ofm1 andm2 result in a scaling factor for thew-scale ofm1m2/(m1 + m2),
as we found earlier from our geometric derivation. We had calculated
m1 = 20.73 andm2 = 24.36 before to make the u- and v-scales 11 in. long
for the given ranges, givingm3 = 11.20. This determinant also shows that
we place the u-scale vertically at x = 0 and the v-scale vertically at x = 1,
with thew-scaleatx = m1/(m1 + m2) = 0.4597; but in factwecanmultiply
the first column by 6 to get a width of 6 in., and in that case the w-scale lies
vertically at x = 2.759 in., so we end up with exactly the same nomogram
we found in Figure 3 on p. 461 using geometric methods.
This was a bit of work, but we have found a universal determinant

in standard nomographic form for the equation f1(u) + f2(v)− f3(w) = 0,
includingscaling factors. In fact, a greatdeal of effortwasexerted in thepast
to match particular forms of equations directly to standard nomographic
determinant forms.
Let’s derive an N chart for division using determinants. We can rear-

range the equation w = u/v to u− vw = 0. We set A = u and B = v to
get

A× 1 + B × 0− u = 0,
A× 0 + B × 1− v = 0,
A× 1−B × w − 0 = 0,

ØØØØØ

1 0 −u
0 1 −v
1 −w 0

ØØØØØ = 0.

Onepossible standarddeterminant thatwe can construct usingour rules
is

ØØØØØØØØ

0 u 1

1 −v 1
w

w + 1
0 1

ØØØØØØØØ
= 0.

This is plotted as the nomogram in Figure 16. If we had specified ranges
of u and v that included negative values, the nomogram would have ap-
peared as a figure H, but here we see an N chart with a perpendicular
middle line. We could use a shear transformation on our determinant as
described later to yield an N chart with the more familiar angled middle
scale, which allows longer scales for the same overall nomogram size.
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Figure 16. A nomogram for w = u/v.

Curved-Scale Nomograms Using Determinants
Determinants are most useful when one or more of the u-, v-, and w-

scales is curved. The quadratic equation w2 + uw + v = 0 can be repre-
sented as the first determinant below, and with the determinant rules we
can arrive at the standard nomographic form shown in the second deter-
minant [Adams 1964; Otto 1963]:

ØØØØØØ

1 0 −u
0 1 −v
w 1 w2

ØØØØØØ
= 0 =⇒

ØØØØØØØØØ

−u 1 1

v 0 1

w2

w − 1
w

w − 1
1

ØØØØØØØØØ

= 0.

The u-scale runs linearly in the negative direction along the line y = 1.
The v-scale runs linearly in the positive direction with the same scale along
the line y = 0. These are shown in Figure 17, in which the positive root w1

of the quadratic equation can be found on the curved scale (the other root
is u + w1).
A similar curved-scale nomogram is given in Figure 18 for the equation

M = (T −N)/T 2, or MT 2 − T + N = 0. This can be readily cast as the
first determinant below and then manipulated into standard nomographic
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The Lost Art of Nomography 477

form as the second:

ØØØØØ

T 2 1 −T
1 0 −M
0 1 −N

ØØØØØ = 0 =⇒

ØØØØØØØØØ

0 N 1

T 2

T 2 + 1
T

T 2 + 1
1

1 M 1

ØØØØØØØØØ

= 0.

It’s possible to have two or three curved scales, depending on how the
determinant works out, and it is possible to have two or all three curves
overlap exactly. The equation for the velocity of water flowing from a
rectangular opening in a vertical wall is

v =
2
3
p

2g

√
h3/2

1 − h3/2
2

h1 − h2

!

.

We canwrite this inmetric units as 0.338vh1 − 0.338vh2 − h3/2
1 + h3/2

2 = 0,
and we can verify that this equation is equivalent to the first determinant
equation below. Dividing the left column by h1h2 and swapping rows
provides the form plotted in Figure 19 [Soreau 1902].

ØØØØØØØ

h1 h1/2
2 1

0 0.338v 1
h2 h1/2

1 1

ØØØØØØØ
= 0 =⇒

ØØØØØØØØØØØ

0 0.338v 1
1
h1

h1/2
1 1

1
h2

h1/2
2 1

ØØØØØØØØØØØ

= 0.

Here the h1- and h2-scales lie exactly on the same curve. They could
have separate tickmarks on this curve if they had different scales, but here
they have the same scaling factor. Actually, the two sides of the scales are
used for different ranges for greater versatility; so v, h1, and h2 should use
either the left or right sides of the scales but not both. It also turns out that
if there is a solution (v, h1, h2), then there is also a solution (kv, k2h1, k2h2)
for any k. This feature increases the range and also allows us to move (if
needed) into an area of the curve that is not as flat between our h1- and h2-
values. In fact, the h1- and h2-values are four times as large in the second
range, and the v values are twice as large, for this reason.
Otto [1963] provides an interesting alternate determinant for the equa-

tion f1(u) + f2(v) + f3(w) = f1(u)f2(v)f3(w):
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Figure 19. A nomogram for the water flow through a rectangular opening in a vertical wall (after
Soreau [1902]).

ØØØØØØØØØØØØØ

2
f1(u)2 + 4

f1(u)
f1(u)2 + 4

1

2
f2(v)2 + 4

f2(v)
f2(v)2 + 4

1

2
3

1
3f3(w)

1

ØØØØØØØØØØØØØ

= 0.

The nomogram for the particular equation of this typeu + v + w = uvw
is shown in Figure 20, where again two of the three scales overlap.
There is a very interesting determinant that can be created for the equa-

tion f1(u)f2(v)f3(w) = 1 [Otto 1963]:
ØØØØØØØØØØØØØØ

−f1(u)
f1(u)3 − 1

−f1(u)2

f1(u)3 − 1
1

−f1(v)
f2(v)3 − 1

−f2(v)2

f2(v)3 − 1
1

−f3(w)
f3(w)3 − 1

−f3(w)2

f3(w)3 − 1
1

ØØØØØØØØØØØØØØ

= 0.
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Figure 20. A nomogram for u + v + w = uvw (after Otto [1963]).

For uvw = 1, all three scales coincide and have the same scaling factor, and
it turns out that the equation for this curve is x3 + y3 − xy = 0 (called the
folium of Descartes). This nomogram is shown in Figure 21.

Grid Nomograms Using Determinants
A single, non-compound nomogram for an equation of 4 to 6 variables

can be created if the determinant in standard nomographic form contains
functions of no more than two variables per row. The single scale for a
one-variable row is replaced by a grid of scales for values of each of the two
variables, resulting in a grid nomogram.

Celestial Observations
For example, consider the astronomical relationship between the az-

imuth Z and declination D of a celestial body, the latitude L of an ob-
server, and the altitudeH of the body as seen by the observer [Adams 1964;
d’Ocagne 1899; Roschier and Makkonen 2009]:

cosZ =
sinD − sinH sinL

cosH cosL
,
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Figure 21. A nomogram in the form of the folium of Descartes for uvw = 1 (after Otto [1963]).

or

cosZ cosH cosL− sinD + sinH sinL = 0.

Setting A = cosZ and B = sinD, we have

A× 1 + N × 0− cosZ = 0,
A× 0 + B × 1− sinD = 0,

A× cosH cosL−B × 1 + sinH sinL = 0,

and consequently
ØØØØØØØ

1 0 − cosZ

0 1 − sinD

cosH cosL −1 sinH sinL

ØØØØØØØ
= 0 =⇒
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=⇒

ØØØØØØØØØØØ

0 cosZ 1

1
1 + cosH cosL

− sinH sinL

1 + cosH cosL
1

1 − sinD 1

ØØØØØØØØØØØ

= 0.

The nomogram for this equation is shown in Figure 22, where the inter-
section of the appropriate H and L curves serves as one scale value, with
H = L corresponding to the point on the common curve along the enve-
lope. The sample isopleth relates the values D = 10◦, H = 65◦, L = 30◦,
and Z = 139.8◦ or 220.0◦. There are two possible values of Z for the same
reason that the sun is at the same altitude twice a day, once in the morning
and once in the afternoon. It turns out that theH and L curves on the grid
are interchangeable except thatH is always taken as positive.
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Trajectory of a Projectile
The trajectory of a projectile neglecting air friction can be represented

by a grid nomogram [Hoelscher et al. 1958]. The relevant equation is

Y = X tanA− gX2

2V 2
0 cos2 A

,

where A is the initial angle, V0 is the initial velocity, Y is the height, and g
is the acceleration due to gravity. Hoelscher derives the determinant and
plots a family of curves for the nomogram of this equation, one for each
value of A. However, we present it as a grid nomogram in Figure 23 (with
work done on scaling the x-axis and the y-axis to square up the output for
the given ranges).
ØØØØØØØØØ

g

2V 2
0

0 1

Y X 0

tanA 1
X

cos2 A

ØØØØØØØØØ

= 0 =⇒

ØØØØØØØØØØ

g

2V 2
0

0 1

Y 1 1
X tanA cos2 A

X2 + cos2 A

cos2 A

X2 + cos2 A
1

ØØØØØØØØØØ

= 0.
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Transformations
In addition to producing sophisticated nomograms, the use of deter-

minants offers one other major advantage. Often the scaling factors of
variables have to be manipulated to get a nomogram that uses all the avail-
able area and yet stretches portions of the curves that are most in need of
accuracy; alternatively, there may be a need to bring distant points (even
at infinity) into a compact nomogram. This can be done by substitutions
of the elements of the determinant or by multiplying the entire determi-
nant by standard translation or rotation matrices. Let’s look at the types of
transformations that can be used for a nomogram.

Translation
We can translate the nomogram by adding an offset to all elements in

the x column or all elements in the y column of the determinant:

xn → xn + c, yn → yn + d.

Rotation
We can rotate the nomogram about the origin of the axes by an angle θ

(positive for counter-clockwise rotation) by replacing each element in the
x column and each element in the y column with

xn → xn sin θ + yn cos θ, yn → xn cos θ − yn sin θ.

Stretch
We can stretch the nomogram by multiplying all elements in the x col-

umn or all elements in the y column of the determinant by a factor.

xn → cxn, yn → dyn.

Shear
A shear is a slewing of perpendicular axes to oblique axes or vice versa.

This interpretation is perhaps best understood by referring to Figure 24
showing a shear from one set of axes to another, in which the x0-axis is
canted at an angle θ to the x-axis but the y0-axis aligns with the y-axis. For
this case,

xn → xn cos θ, yn → yn + xn sin θ.

Figure 24 on the next page shows the effect of shearing the nomogram
in Figure 19 on p. 478. It turns out that a shear angle of θ = 2.0◦ lifts the
tail of the curve for h1 and h2 and allows the v-scale to expand to the full
height of the nomogram for greater precision of that scale. However, here
we use θ = 4.0◦ to provide greater curvature of the tail for greater precision
in h1 and h2. Shear can also be used to convert a traditional N chart with a
slanting middle line (as in Figure 5 on p. 463) to one with a perpendicular
middle line (as in Figure 16 on p. 475) and vice versa.
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Figure 24. Shearing to an oblique x-axis and its effect on the nomogram in Figure 19.

Projection
In Figure 25, a projection uses a pointP (called the center of perspectivity)

to project rays through points of a nomogram in the xy-plane to map them
onto the yz-plane (also called the x0y0-plane), foreshortening ormagnifying
lines in varying amounts in the x0 and y0 directions.

X

y

z

P
X

y

z

P

(a) (b)

S’

Figure 25. Projection onto the yz-plane through a point P a) not located under a nomogram and
b) located under a scale.

In Figure 25a, the projection has the beneficial effect of increasing the
size of the third scale to match that of the others. In Figure 25b, the point
P is located beneath the nomogram; and it is apparent that points nearly
above P are more widely separated than others in the projection, resulting
in something of a magnifying-lens effect on that area of the nomogram.
We can also see the curious effect of the center of the nomogram being
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cast outside of the two outer scales. Projection can be used in either case
to spread scales in areas of the nomogram for which greater accuracy is
important, so it is a very important tool. For P at any location (xP , yP , zP ),
we have

xn →
zP xn

xn − xP
, yn →

yP xn − xP yn

xn − xP
.

Looking back at our celestial navigation nomogram in Figure 22 on
p. 481, we see that the curves are quite crowded for lower altitudesH and
latitudesL. A second nomogram for these rangeswould be very beneficial.
From our determinant for this nomogram (pp. 480–481), we glean that the
pointed end of the grid lies at (0.5, 0); so if we place a projection point P
at, say, (0.47, 0,−0.5), we will magnify the area near the point to spread
the scales out in that area for drawing finer divisions. The result of this
projection is shown in Figure 26, where the grid now lies outside the other
scales.
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Figure 26. The celestial navigation nomogram from Figure 22 after projection through the point
(0.47, 0.0,−0.5), providing greater accuracy for lower altitudesH.
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Figure 27 is a portion of the projectile trajectory nomogram of Figure 23
on p. 482 after projection through P = (2, 0.5,−1) to magnify it for large
distances X . The Y -scale is also extended to the more negative distances
as required for the larger X . Points above P are projected to infinity, so
only half of the nomogram is shown (the other half maps to the left of the
vertical scales).
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Figure 27. A portion of the projectile trajectory nomogram in Figure 23 after projection through
the point (2,0.5,-1), providing greater accuracy for longer distancesX.

A Transformation Exercise
Epstein [1958] suggests a transformation exercise for the reader that we

will undertake. A determinant representing the equation q2 − aq + b = 0
can be constructed as
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ØØØØØØ

q
q−1

q2

q−1
1

1 a 1
0 b 1

ØØØØØØ
= 0.

This nomogram appears in Figure 28 plotted on an xy-grid for refer-
ence. Eliminating q between the x- and y-elements of the first row of the
determinant, we arrive at x2 − xy + y = 0, demonstrating that the q-scale
is in fact a hyperbola. However, the layout of the q-scale is problematic, as
the two halves stretch toward infinity very quickly and it is not possible to
accurately locate q-points for isopleths near the asymptotes of the hyper-
bola. So we will transform this nomogram into one in which the q-scale is
finite.
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Figure 28. Original nomogram for q2 − aq + b = 0.

First,we rotate thenomogramclockwiseby θ = 45◦ and stretch it in both
dimensions by

√
2, for a reason that will become apparent in the next trans-

formation. The rotation plus stretch transforms the original nomogram (a)
to (b) in Figure 29.
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Figure 29. Transformation sequence for a nomogram of q2 − aq + b = 0.

xn → xn + yn, yn → −xn + yn;

ØØØØØØØØØ

q2 + q

q − 1
q 1

a + 1 a− 1 1

b b 1

ØØØØØØØØØ

= 0.

We rotated the nomogram because we want a vertical line (say, x = 1) that
does not intersect the hyperbola. A projection transformation can convert
a scale with two branches (like this hyperbola) into a single connected scale
(an ellipse) if a straight line separating the two branches is projected to
infinity, that is, if the line is parallel to the yz-plane (which x = 1 is) and the
projection point P is located directly above or below it in its z-value (see
Figure 25b). Choosing P = (1,−1, 1), we find that an ellipse magically
appears in (c).
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xn →
xn

xn − 1
, yn →

−xn − yn

xn − 1
;

ØØØØØØØØØØØØ

q2 + q

q2 + 1
−2q2

q2 + 1
1

a + 1
a

−2 1

b

b− 1
−2b
b− 1

1

ØØØØØØØØØØØØ

= 0.

Now let’s shear the nomogram so that the b-scale lies on the y-axiswhile
keeping thea-scaleparallel to thex-axis. Weare shearing to they-axis rather
than to the x-axis as described earlier for shear; and for a b-scale slope of
−0.5, we arrive at (d).

xn → xn + yn/2, yn → yn;

ØØØØØØØØØØØØ

q

q2 + 1
−2q2

q2 + 1
1

1
a

−2 1

0
−2b
b− 1

1

ØØØØØØØØØØØØ

= 0.

Nowwe’ll translate the nomogramupward by 2 to place the intersection
point on the origin as in (e) and shrink the nomogram in the y-direction by
a factor of 2 to get a circular q-scale as in (f).

xn → xn, yn → (yn + 2)/2;

ØØØØØØØØØØØØ

q

q2 + 1
1

q2 + 1
1

1
a

0 1

0
−1

b− 1
1

ØØØØØØØØØØØØ

= 0.

Figure 30 is the plot of the final determinant, a very distinctive circular
nomogram. The entire range of q from −∞ to +∞ is now represented in
a finite area; and certainly the range less than 1.5, which veered to infinity
in our original nomogram, is nicely accessible. The larger numbers are not
as accessible, but the ranges can be skewed to spread out to any range by
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Figure 30. A circular nomogram for q2 − aq + b = 0 (after Epstein [1958]).

multiplying the original equation by a constant. We could have stopped
at any of the nomograms containing an ellipse, but it is easier to draft the
circle.
It’s interesting to play aroundwith a straightedge on the circular nomo-

gram that we derived above to see that it works. In particular, an isopleth
through a value of a and a value of b will just touch the q-circle if the dis-
criminant a2 − 4b from the quadratic formula is 0, providing the repeated
real root. When the discriminant is less than zero, the isopleth misses the
q-circle, denoting no real roots; and when the discriminant is greater than
zero, the isopleth crosses the two real roots on the q-circle.
In fact, if you eliminate the a-scale, then the b-scale represents the prod-

uct of two numbers on the q-circle, because if we have two solutions q1 and
q2 for the equation q2 − aq + b = 0, then the equation can be written as
(q − q1)(q − q2) = 0. Multiplying this out and equating terms to the orig-
inal equation, we find that b = q1q2 and a = q1 + q2. It turns out that any
three-line parallel-scale nomogram can be transformed into a nomogram
with two scales on a circle and one on a line, although the scales on the
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circle generally do not have the same values and require tickmarks on each
side of the circumference.
Transformations can also be performed by multiplying a transforma-

tion matrix times the matrix of the nomogram determinant and taking the
determinant of the result. Two or more transformations can be combined
by multiplying their transformation matrices. (It often happens that after
such a matrix multiplication, the nomogram determinant needs to be ma-
nipulated again into the standard nomographic form.) For example, the
transformation matrices for rotation and projection are

√cos θ − sin θ 0
sin θ cos θ 0

0 0 1

!

and

√−xP 0 0
yP zP 0
0 0 −xP

!

.

It is possible to use matrix multiplication to map a trapezoidal shape
(suchas theboundariesof anomogramthatdoesnotoccupya full rectangle)
into a rectangular shape. Thiswould increase the accuracy of the scales that
can be expanded to fill the sheet of paper. Consider the following matrix
multiplication:

√
k11 k12 k13

k21 k22 k23

k31 k32 k33

!

×
√

xu yu 1
xv yv 1
xw yw 1

!

.

By the rules of matrix multiplication and some manipulation of the re-
sult, each y0 and x0 in the resulting matrix can be represented as

x0 =
xk11 + yk21 + k31

xk13 + yk23 + k33
, y0 =

xk12 + yk22 + k32

xk13 + yk23 + k33
.

Now, if we want to remap an area such that the points (x1, y1), (x2, y2),
(x3, y3) and (x4, y4)map to, say, the rectangle (0, 0), (0, a), (b, 0) and (b, a),
we insert thefinal and initialx- andy-values into the formulasabove, giving
us eight equations in nine unknown k-values. So we choose one k, solve
for the other eight k-values, multiply the original determinant by the k-
matrix and convert it back to standard nomographic form, and replot the
nomogram. It’s not a lot of fun, really, but it demonstrates the efforts that
were once devoted to nomography.

Conclusion
Nomograms are fascinating artifacts in the history of mathematics, the

culmination of efforts over many years to invent graphical calculators for
scientific and engineering use. Basic nomographic designs exist for most
forms of equations, more designs than are presented here, and transforma-
tions can customize them for greatest ease of use.
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Today, the use of nomograms is scattered at best. There are many sim-
ple nomograms that doctors can use to quickly assess probabilities and
attributes such as the body-mass index (BMI), and some science and engi-
neering articles include nomograms. There is also a smattering of engineer-
ing nomograms found as supplements in catalogs by manufacturers. But
there could bemore applications of thesewhere convenience and speed are
paramount. Popular calculations such as exercise time and type vs. calo-
ries could be distributed on paper and customized by users with penciled
additions. Medical patients could take nomograms home to post on refrig-
erators to consult and record information on; and paper organizers might
include tax, tip, andmileage calculators. Mortgage and compound-interest
calculations are a snap for anyone with a corresponding nomogram.
With a modern slant, nomograms could easily be incorporated into the

colorful infographics that are so popular today. Nomograms that took days
to analyze and draft on paper in the past can be generated in seconds on a
computer and transformed interactively to produce radically different and
innovative designs.
But nomograms have an intrinsic charm beyond their practical use. The

more-beautiful ones attract interest with their mix of technical and artistic
flair, much as unusual sundials draw people—in fact, the sun’s shadow
across curves on some sundial faces can be considered an isopleth. As
a calculating aid, nomograms can solve very complicated formulas with
amazing ease. As a curiosity, nomograms provide a satisfying, hands-on
application of interesting mathematics in an engaging, creative activity.
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