Example of the Saint-Robert Criterion

Ron Doerfler

January 31, 2011

Can the equation $z=x y+\sqrt{1+x^{2}} \sqrt{1+y^{2}}$ be constructed as a parallel-scale nomogram? We will use Saint-Robert's criterion.

Here $F(x, y, z)=-z+x y+\sqrt{1+x^{2}} \sqrt{1+y^{2}}=0$.

$$
\begin{aligned}
\frac{\partial F}{\partial x} & =y+\sqrt{1+y^{2}}(1 / 2)\left(1+x^{2}\right)^{-1 / 2}(2 x)=y+x \sqrt{\frac{1+y^{2}}{1+x^{2}}} \\
\frac{\partial F}{\partial y} & =x+\sqrt{1+x^{2}}(1 / 2)\left(1+y^{2}\right)^{-1 / 2}(2 y)=x+y \sqrt{\frac{1+x^{2}}{1+y^{2}}} \\
R & =\frac{\partial F / \partial x}{\partial F / \partial y}=\frac{y+x \sqrt{\frac{1+y^{2}}{1+x^{2}}}}{x+y \sqrt{\frac{1+x^{2}}{1+y^{2}}}} \\
& =\frac{\frac{y \sqrt{1+x^{2}}+x \sqrt{1+y^{2}}}{\sqrt{1+x^{2}}}}{\frac{x \sqrt{1+y^{2}}+y \sqrt{1+x^{2}}}{\sqrt{1+y^{2}}}}=\sqrt{\frac{1+y^{2}}{1+x^{2}}} \\
\ln R & =1 / 2 \ln \left(1+y^{2}\right)-1 / 2 \ln \left(1+x^{2}\right) \\
\frac{\partial \ln R}{\partial x} & =-1 / 2\left(\frac{1}{1+x^{2}}\right)(2 x)=-\frac{x}{1+x^{2}} \\
\frac{\partial^{2} \ln R}{\partial x \partial y} & =0
\end{aligned}
$$

This result means we can represent $F(x, y, z)=-z+x y+\sqrt{1+x^{2}} \sqrt{1+y^{2}}=0$ as a parallel-scale nomogram, or in other words, we can express it in the form $Z(z)=X(x)+Y(y)$ or in the form $Z(z)=X(x) Y(y)$ which can be rewritten as $\ln Z(z)=\ln X(x)+\ln Y(y)$.

To find $X(x)$,

$$
\begin{aligned}
\ln \frac{d X}{d x} & =\int \frac{\partial \ln R}{\partial x} d x=\int-\frac{x}{1+x^{2}} d x=-1 / 2 \ln \left(1+x^{2}\right)=\ln \left(\frac{1}{\sqrt{1+x^{2}}}\right) \\
\text { so } \quad \frac{d X}{d x} & =\frac{1}{\sqrt{1+x^{2}}} \\
\text { from integral tables, } \quad X & =\ln \left(x+\sqrt{1+x^{2}}\right) \quad \text { which is sometimes given as } \sinh ^{-1} x
\end{aligned}
$$

For $Y(y)$,

$$
\begin{aligned}
\frac{d Y}{d y} & =\frac{d x / d x}{R} \quad \text { which will contain no variable } x \\
& =\frac{\frac{1}{\sqrt{1+x^{2}}}}{\sqrt{\frac{1+y^{2}}{1+x^{2}}}}=\frac{1}{\sqrt{1+y^{2}}} \\
\text { so } \quad Y & =\ln \left(y+\sqrt{1+y^{2}}\right)
\end{aligned}
$$

And for $Z(z)$, we can use $Z(z)=X(x)+Y(y)$:

$$
\begin{aligned}
Z(z) & =\ln \left(x+\sqrt{1+x^{2}}\right)+\ln \left(y+\sqrt{1+y^{2}}\right) \\
& =\ln \left[\left(x+\sqrt{1+x^{2}}\right)\left(y+\sqrt{1+y^{2}}\right)\right]
\end{aligned}
$$

We are guaranteed that we can use $z=x y+\sqrt{1+x^{2}} \sqrt{1+y^{2}}$ to express $Z(z)$ in terms of z and eliminate all x and y terms. With some algebra we can find that

$$
Z(z)=\ln \left(z+\sqrt{z^{2}-1}\right)
$$

Substituting X, Y and Z into $Z(z)=X(x)+Y(y)$ we have

$$
\begin{aligned}
\ln \left(z+\sqrt{z^{2}-1}\right) & =\ln \left(x+\sqrt{1+x^{2}}\right)+\ln \left(y+\sqrt{1+y^{2}}\right) \\
\left(z+\sqrt{z^{2}-1}\right) & =\left(x+\sqrt{1+x^{2}}\right)\left(y+\sqrt{1+y^{2}}\right)
\end{aligned}
$$

or
which is the form for a nomogram consisting of three parallel scales.
It turns out that this works when x in the original equation $F(x, y, z)$ is replaced with any function of x, y is replaced with any function of y, and z is replaced with any function of z. It is a surprising result, and one that Maurice d'Ocagne included in his 1899 book, Traité de Nomographie (pages 418-421).

