The types of calculations performed by lightning calculators were historically quite limited, notable mainly for the size of the numbers and the speed at which they were manipulated. But remember that the questioner had to verify every calculation by hand, making higher powers and roots (particularly inexact roots) much less feasible. The dawn of calculators and computers propelled some of these tasks into hitherto uncharted territories such as 13^{th} or 23^{rd} roots, deep roots of inexact powers, and so forth, much of it supported by more sophisticated mathematics. Here we will review the methods of calculation used in the past, many of them not commonly known, as well as other techniques that are relatively new.

# mathematics

## Lightning Calculators I: The Players

Individuals with preternatural abilities to calculate arithmetic results without pen, paper or other instruments, and to do so at astonishing speed, are the stuff of mathematical and psychological lore. These “lightning calculators” were sometimes of limited mental ability, sometimes illiterate but of average intelligence, and sometimes exceptionally bright, this despite the popular notion of the *idiot savant*. The techniques used by these people are not generally well known. In fact, despite claims by educators that acquiring a mental facility with arithmetic operations is essential to a student’s mathematics education, I see little in the textbooks other than simple estimations based on rounding values, surely the most basic and least interesting mental task. The field of mental calculation may not be a lost art *per se*, but in this digital age it most certainly is a neglected one.

Part I of this essay attempts to take a fresh look at both historical and modern lightning calculators. Part II describes classic and modern methods of mental calculation. And finally, Part III demonstrates as a cautionary tale the shallow and deceptive nature of most media coverage of lightning calculators, an important consideration in analyzing reports on them.

## A 4-Variable Nomogram — 四变量诺模图

by Liunian Li 李留念 and Ron Doerfler

Designing a nomogram for an equation containing more than three variables is difficult. The most common nomogram of this sort implements pivot points, requiring the user to create a series of isopleths to arrive at the solution. In this guest essay, Liunian Li describes the ingenious design of a nomogram that requires just a single isopleth to solve a 4-variable equation.

## A Zoomorphic Nomogram

In Part III of my essay on The Art of Nomography, I mentioned the use of Weierstrass’ Elliptic Functions to create a nomogram composed of three variable scales overlaid onto a single curve. In particular, Epstein describes using this family of functions to create a nomogram for the equation **u + v + w = 0**, adding that the formula can be generalized for functions of these variables. This topic generated some interest, and it certainly is interesting to me, so I’ve explored it in more detail by designing a single-curve nomogram based on functions of u, v and w. This essay describes the procedure I followed to create a “fish” nomogram (found **here**) manifesting the formula for the oxygen consumption of rainbow trout as a function of weight and water temperature—a modest attempt to blend art with artifice.

## The Art of Nomography III: Transformations

In addition to providing sophisticated nomograms, the use of determinants as described in the previous Part II offers one other huge advantage. Often the scaling factors of variables have to be manipulated to get a nomogram that uses all the available area and yet stretches portions of the curves that are most in need of accuracy; alternatively, there may be a need to bring distant points (even at infinity) into a compact nomogram. This can be done by morphing the nomogram with any transformation that maps points into points and lines into lines. It is also intriguing to consider the aesthetics of such transformations, creating eye-catching nomograms as an artistic process.

This final part of the essay reviews the types of transformations that can be performed on a nomogram, and it concludes by considering the roles of nomograms in the modern world and providing references for further information.

## The Art of Nomography II: Designing with Determinants

The previous Part I of this essay described the construction of straight-line nomograms using simple geometric relationships. Beyond this, a brief knowledge of determinants offers a powerful way of designing very elegant and sophisticated nomograms. A few basics of determinants are presented here that require no previous knowledge of them, and their use in the construction of straight line nomograms is demonstrated. Then we will see how these determinants can be manipulated to create extraordinary nomograms.

## The Art of Nomography I: Geometric Design

Nomography, truly a forgotten art, is the graphical representation of mathematical relationships or laws (the Greek word for law is *nomos*). These graphs are variously called **nomograms** (the term used here), **nomographs**, **alignment charts**, and **abacs**. This area of practical and theoretical mathematics was invented in 1880 by Philbert Maurice d’Ocagne (1862-1938) and used extensively for many years to provide engineers with fast graphical calculations of complicated formulas to a practical precision.

Along with the mathematics involved, a great deal of ingenuity went into the design of these nomograms to increase their utility as well as their precision. Many books were written on nomography and then driven out of print with the spread of computers and calculators, and it can be difficult to find these books today even in libraries. Every once in a while a nomogram appears in a modern setting, and it seems odd and strangely old-fashioned—the multi-faceted Smith Chart for transmission line calculations is still sometimes observed in the wild. The theory of nomograms “draws on every aspect of analytic, descriptive, and projective geometries, the several fields of algebra, and other mathematical fields” [Douglass].

This essay is an overview of how nomograms work and how they are constructed from scratch. Part I of this essay is concerned with straight-scale designs, Part II additionally addresses nomograms having one or more curved scales, and Part III describes how nomograms can be transformed into different shapes, the status of nomograms today, and the nomographic references I consulted.